Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biotechnol Appl Biochem ; 62(5): 681-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25322902

RESUMEN

Although adsorption is an essential step in the enzymatic hydrolysis of lignocellulosic materials, literature reports controversial results in relation to the adsorption of the cellulolitic enzymes on different biomasses/pretreatments, which makes difficult the description of this phenomenon in hydrolysis mathematical models. In this work, the adsorption of these enzymes on Avicel and sugarcane bagasse pretreated by the hydrothermal bagasse (HB) and organosolv bagasse (OB) methods was evaluated. The results have shown no significant adsorption of ß-glucosidase on Avicel or HB. Increasing solids concentration from 5% (w/v) to 10% (w/v) had no impact on the adsorption of cellulase on the different biomasses if stirring rates were high enough (>100 rpm for Avicel and >150 rpm for HB and OB). Adsorption equilibrium time was low for Avicel (10 Min) when compared with the lignocellulosic materials (120 Min). Adsorption isotherms determined at 4 and 50 °C have shown that for Avicel there was a decrease in the maximum adsorption capacity (Emax) with the temperature increase, whereas for HB increasing temperature increased Emax . Also, Emax increased with the content of lignin in the material. Adsorption studies of cellulase on lignin left after enzymatic digestion of HB show lower but significant adsorption capacity (Emax = 11.92 ± 0.76 mg/g).


Asunto(s)
Celulasa/química , Celulosa/química , Lignina/química , Saccharum/química , beta-Glucosidasa/química , Adsorción , Aspergillus niger/enzimología , Sitios de Unión , Cinética , Trichoderma/enzimología
2.
BMC Biotechnol ; 13: 94, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24175970

RESUMEN

BACKGROUND: There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. RESULTS: The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, ß-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial ß-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. CONCLUSIONS: The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.


Asunto(s)
Alternaria/enzimología , Aspergillus niger/enzimología , Glicósido Hidrolasas/biosíntesis , Talaromyces/enzimología , Trichoderma/enzimología , Celulasa/metabolismo , Celulasas/metabolismo , Celulosa/química , ADN de Hongos/genética , Etanol/metabolismo , Fermentación , Glicósido Hidrolasas/metabolismo , Hidrólisis , Saccharum/metabolismo , Saccharum/microbiología , Análisis de Secuencia de ADN , Residuos , Zea mays/metabolismo , Zea mays/microbiología , beta-Glucosidasa/metabolismo
3.
J Proteomics ; 227: 103922, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736135

RESUMEN

The wild type strain Trichoderma harzianum was able to synthesize enzymes that can catalyse the hydrolysis of p-nitrophenyl-ß-D-glucopyranoside (PNPGase) in glucose-limited chemostat cultures. Fructose/glucose and sucrose conditions provided low levels of PNPGase activity. To investigate whether under these conditions other enzymes were produced, a shotgun proteomics analysis of their supernatants was performed. The analysis has indicated that the different carbon sources used influenced the amounts of proteins secreted including 1,3-beta-glucanosyltransferase, alpha-1,2-mannosidase, alpha-galactosidase and glucan 1,3-beta-glucosidase. The analysis has also suggested the presence of beta-glucosidase, which could also be represented by PNPGase activity. Intracellular metabolites were quantified during PNPGase production for the condition using 20 g/L of glucose in the feed and differences were observed, indicating that intracellular glucose could be inhibiting PNPGase production. SIGNIFICANCE: This work shows that sugars such as glucose, fructose/glucose and sucrose can be used as substrates for the continuous synthesis of different enzymes under carbon-limited conditions by Trichoderma harzianum. As far as we know, this is the first work about the continuous synthesis of enzymes under carbon-limited conditions suggesting that different easily assimilated carbon sources can be used to generate different enzymatic cocktails. Each enzyme or uncharacterized protein suggested by shotgun proteomics has the potential to become a promising product for biotechnological applications.


Asunto(s)
Trichoderma , Carbono , Hidrólisis , Hypocreales , beta-Glucosidasa
4.
Data Brief ; 14: 255-259, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28861449

RESUMEN

This article presented an innovative data of feasibility to produce Arachidonic acid (ARA), as added-value Polyunsaturated Fatty Acids (PUFA), among other lipids from Mortierella elongata, using simulated low cost sugarcane wastewater, vinasse, as a carbon source. Data from lipids quantification by total lipids extraction and by lipid classes was presented. M. elongata was able to produce 156.45mg of ARA per g of total lipids.

5.
J Biotechnol ; 246: 24-32, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28192217

RESUMEN

This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and ß-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum.


Asunto(s)
Celulasas/genética , Celulosa/química , Factores de Transcripción/genética , Trichoderma/crecimiento & desarrollo , Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos , Celulasas/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Activación Transcripcional , Trichoderma/genética , Trichoderma/metabolismo , Regulación hacia Arriba
6.
Appl Biochem Biotechnol ; 178(2): 408-17, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26458886

RESUMEN

Among approaches applied to obtain high productivity and low production costs in bioprocesses are high cell density and the use of low cost substrates. Usually low cost substrates, as waste/agroindustrial residues, have low carbon concentration, which leads to a difficulty in operating bioprocesses. Real time control of process for intracellular products is also difficult. The present study proposes a strategy of repeated fed-batch with cell recycle to attain high cell density of Cupriavidus necator and high poly(3-hydroxybutyrate) (P(3HB)) productivity, using a substrate with low carbon source concentration (90 g l(-1)). Also, the use of the oxygen uptake rate data was pointed out as an on line solution for process control, once P(3HB) is an intracellular product. The results showed that total biomass (X), residual biomass (Xr) and P(3HB) values at the end of the culture were 61.6 g l(-1), 19.3 g l(-1) and 42.4 g l(-1) respectively, equivalent to 68.8 % of P(3HB) in the cells, and P(3HB) productivity of 1.0 g l(-1) h(-1). Therefore, the strategy proposed was efficient to achieve high productivity and high polymer content from a medium with low carbon source concentration.


Asunto(s)
Carbono/metabolismo , Cupriavidus necator/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Biomasa , Medios de Cultivo , Cinética
7.
Bioresour Technol ; 198: 101-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26378961

RESUMEN

A mathematical model to describe the kinetics of enzyme production by the filamentous fungus Trichoderma harzianum P49P11 was developed using a low cost substrate as main carbon source (pretreated sugarcane bagasse). The model describes the cell growth, variation of substrate concentration and production of three kinds of enzymes (cellulases, beta-glucosidase and xylanase) in different sugarcane bagasse concentrations (5; 10; 20; 30; 40 gL(-1)). The 10 gL(-1) concentration was used to validate the model and the other to parameter estimation. The model for enzyme production has terms implicitly representing induction and repression. Substrate variation was represented by a simple degradation rate. The models seem to represent well the kinetics with a good fit for the majority of the assays. Validation results indicate that the models are adequate to represent the kinetics for a biotechnological process.


Asunto(s)
Carbono/metabolismo , Celulosa/química , Saccharum/química , Trichoderma/química , beta-Glucosidasa/biosíntesis , Biotecnología/métodos , Modelos Estadísticos
8.
Appl Biochem Biotechnol ; 119(1): 51-70, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15496728

RESUMEN

We studied high-density cultures of Pseudomonas putida IPT 046 for the production of medium-chain-length polyhydroxyalkanoates (PHAMCL) using an equimolar mixture of glucose and fructose as carbon sources. Kinetics studies of P. putida growth resulted in a maximum specific growth rate of 0.65 h(-1). Limitation and inhibition owing to NH4+ ions were observed, respectively, at 400 and 3500 mg of NH4+/L. The minimum concentration of dissolved oxygen in the broth must be 15% of saturation. Fed-batch strategies for high-cell-density cultivation were proposed. Pulse feed followed by constant feed produced a cell concentration of 32 g/L in 18 h of fermentation and low PHAMCL content. Constant feed produced a cell concentration of 35 g/L, obtained in 27 h of fermentation, with up to 15% PHAMCL. Exponential feed produced a cell concentration of 30 g/L in 20 h of fermentation and low PHAMCL content. Using the last strategy, 21% PHAMCL was produced during a period of 34 h of fed-batch operation, with a final cell concentration of 40 g/L and NH4+ limitation. Using phosphate limitation, 50 g/L cell concentration, 63% PHAMCL and a productivity of 0.8 g/(L x h) were obtained in 42 h of fed-batch operation. The PHAMCL yield factors from consumed carbohydrate for N-limited and P-limited experiments were, respectively, 0.15 and 0.19 g/g.


Asunto(s)
Ácidos Carboxílicos , Técnicas de Cultivo de Célula/métodos , Fructosa/metabolismo , Glucosa/química , Pseudomonas putida/metabolismo , Saccharum/química , Reactores Biológicos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Extractos Vegetales/química , Pseudomonas putida/citología , Compuestos de Amonio Cuaternario/metabolismo
9.
Appl Biochem Biotechnol ; 170(6): 1336-47, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23666612

RESUMEN

The production of ultrahigh molecular weight poly-3-hydroxybutyric acid (P3HB) from carbohydrates by recombinant Escherichia coli harboring genes from Ralstonia eutropha was evaluated. In shaken-flask experiments, E. coli XL1 Blue harboring plasmid pSK::phaCAB produced P3HB corresponding to 40 and 27% of cell dry weight from glucose and xylose, respectively. Cultures in bioreactor using glucose as the sole carbon source at variable pH values (6.0, 6.5, or 7.0) allowed the production of P3HB with molecular weight varying between 2.0 and 2.5 MDa. These figures are significantly higher than the values often obtained by natural bacterial strains (0.5-1.0 MDa). Contrary to reports of other authors, no influence of pH was observed on the molecular weight of the polymer produced. Using xylose, P3HB with high molecular weight was also produced, indicating the possibility to produce these polymers from lignocellulosic materials.


Asunto(s)
Cupriavidus necator/fisiología , Escherichia coli/fisiología , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Complejos Multienzimáticos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Proteínas Recombinantes/metabolismo , Concentración de Iones de Hidrógeno , Hidroxibutiratos/aislamiento & purificación , Peso Molecular , Complejos Multienzimáticos/genética , Poliésteres/aislamiento & purificación
10.
Bioresour Technol ; 146: 597-603, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23973981

RESUMEN

The development of more productive strains of microorganisms and processes that increase enzyme levels can contribute to the economically efficient production of second generation ethanol. To this end, cellulases and xylanases were produced with the S1M29 mutant strain of Penicillium echinulatum, using different concentrations of cellulose (20, 40, and 60 g L(-1)) in batch and fed-batch processes. The highest activities of FPase (8.3 U mL(-1)), endoglucanases (37.3 U mL(-1)), and xylanases (177 U mL(-1)) were obtained in fed-batch cultivation with 40 g L(-1) of cellulose. The P. echinulatum enzymatic broth and the commercial enzyme Cellic CTec2 were tested for hydrolysis of pretreated sugar cane bagasse. Maximum concentrations of glucose and xylose were achieved after 72 h of hydrolysis. Glucose yields of 28.0% and 27.0% were obtained using the P. echinulatum enzymatic extract and Cellic CTec2, respectively.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Celulasa/biosíntesis , Celulosa/química , Endo-1,4-beta Xilanasas/biosíntesis , Penicillium/metabolismo , Biodegradación Ambiental , Etanol/química , Fermentación , Glucosa/química , Hidrólisis , Oxígeno/química , Saccharum , Factores de Tiempo , Xilosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA