Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nutrients ; 16(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38892560

RESUMEN

Blood selenium (Se) concentrations differ substantially by population and could be influenced by genetic variants, increasing Se deficiency-related diseases. We conducted a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with serum Se deficiency in 382 adults with admixed ancestry. Genotyping arrays were combined to yield 90,937 SNPs. R packages were applied to quality control and imputation. We also performed the ancestral proportion analysis. The Search Tool for the Retrieval of Interacting Genes was used to interrogate known protein-protein interaction networks (PPIs). Our ancestral proportion analysis estimated 71% of the genome was from Caucasians, 22% was from Africans, and 8% was from East Asians. We identified the SNP rs1561573 in the TraB domain containing 2B (TRABD2B), rs425664 in MAF bZIP transcription factor (MAF), rs10444656 in spermatogenesis-associated 13 (SPATA13), and rs6592284 in heat shock protein nuclear import factor (HIKESHI) genes. The PPI analysis showed functional associations of Se deficiency, thyroid hormone metabolism, NRF2-ARE and the Wnt pathway, and heat stress. Our findings show evidence of a genetic association between Se deficiency and metabolic pathways indirectly linked to Se regulation, reinforcing the complex relationship between Se intake and the endogenous factors affecting the Se requirements for optimal health.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Selenio , Humanos , Selenio/sangre , Selenio/deficiencia , Masculino , Femenino , Adulto , Brasil , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Población Blanca/genética , Genotipo , Mapas de Interacción de Proteínas/genética
2.
J Trace Elem Med Biol ; 83: 127376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38183920

RESUMEN

INTRODUCTION: The increasing prevalence of obesity has become a major health problem worldwide. The causes of obesity are multifactorial and could be influenced by dietary patterns and genetic factors. Obesity has been associated with a decrease in micronutrient intake and consequently decreased blood concentrations. Selenium is an essential micronutrient for human health, and its metabolism could be affected by obesity, especially severe obesity. This study aimed to identify differential methylation genes associated with serum selenium concentration in women with and without obesity. METHODOLOGY: Thirty-four patients were enrolled in the study and divided into two groups: Obese (Ob) n = 20 and Non-Obese (NOb) n = 14, according to the Body Mass Index (BMI). Anthropometry, body composition, serum selenium, selenium intake, and biochemical parameters were evaluated. DNA extraction and bisulfite conversion were performed to hybridize the samples on the 450k Methylation Chip Infinium Beadchip (Illumina). Bioinformatics analysis was performed using the R program and the Champ package. The differentially methylated regions (DMRs) were identified using the Bumphunter method. In addition, logarithmic conversion was performed for the analysis of serum selenium and methylation. RESULTS: In the Ob group, the body weight, BMI, fat mass, and free fat mass were higher than in the NOb group, as expected. Interestingly, the serum selenium was lower in the Ob than in the NOb group without differences in selenium intake. One DMR corresponding to the CPT1B gene, involved in lipid oxidation, was related to selenium levels. This region was hypermethylated in the Ob group, indicating that the intersection between selenium deficiency and hypermethylation could influence the expression of the CPT1B gene. The transcriptional analysis confirmed the lower expression of the CPT1B gene in the Ob group. CONCLUSION: Studies connecting epigenetics to environmental factors could offer insights into the mechanisms involving the expression of genes related to obesity and its comorbidities. Here we demonstrated that the mineral selenium might play an essential role in lipid oxidation via epigenetic and transcriptional regulation of the CPT1B gene in obesity.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Epigénesis Genética , Obesidad , Selenio , Femenino , Humanos , Carnitina O-Palmitoiltransferasa/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica , Lípidos , Obesidad/genética , Obesidad/metabolismo , Selenio/metabolismo
3.
Epigenetics ; 19(1): 2375030, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38967279

RESUMEN

The mechanisms by which the ageing process is associated to an unhealthy lifestyle and how they play an essential role in the aetiology of systemic arterial hypertension have not yet been completely elucidated. Our objective is to investigate the influence of NOS3 polymorphisms [-786T > C and (Glu298Asp)] on systolic blood pressure (SBP) and diastolic blood pressure (DBP) response, differentially methylated regions (DMRs), and physical fitness of adult and older women after a 14-week combined training intervention. The combined training was carried out for 14 weeks, performed 3 times a week, totalling 180 minutes weekly. The genotyping experiment used Illumina Infinium Global Screening Array version 2.0 (GSA V2.0) and Illumina's EPIC Infinium Methylation BeadChip. The participants were separated into SNP rs2070744 in TT (59.7 ± 6.2 years) and TC + CC (60.0 ± 5.2 years), and SNP rs17999 in GluGlu (58.8 ± 5.7 years) and GluAsp + AspAsp (61.6 ± 4.9 years). We observed an effect of time for variables BP, physical capacities, and cholesterol. DMRs related to SBP and DBP were identified for the rs2070744 and rs17999 groups pre- and decreased numbers of DMRs post-training. When we analysed the effect of exercise training in pre- and post-comparisons, the GluGlu SNP (rs17999) showed 10 DMRs, and after enrichment, we identified several biological biases. The combined training improved the SBP and DBP values of the participants regardless of the SNPs. In addition, exercise training affected DNA methylation differently between the groups of NOS3 polymorphisms.


Asunto(s)
Presión Sanguínea , Metilación de ADN , Ejercicio Físico , Óxido Nítrico Sintasa de Tipo III , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/genética , Presión Sanguínea/genética , Anciano , Hipertensión/genética , Epigénesis Genética
4.
Exp Gerontol ; 186: 112362, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232788

RESUMEN

Exercise training emerges as a key strategy in lifestyle modification, capable of reducing the risk of developing Alzheimer's disease (AD) due to risk factors such as age, family history, genetics and low level of education associated with AD. We aim to analyze the effect of a 14-week combined exercise training (CT) on the methylation of genes associated with AD in non-alzheimer's disease women. CT sessions lasted 60 min, occurring three times a week for 14 weeks. Forty non-Alzheimer's disease women aged 50 to 70 years (60.7 ± 4.1 years) with a mean height of 1.6 ± 0.1 m, mean weight of 73.12 ± 9.0 kg and a mean body mass index of 29.69 ± 3.5 kg/m2, underwent two physical assessments: pre and post the 14 weeks. DNA methylation assays utilized the EPIC Infinium Methylation BeadChip from Illumina. We observed that 14 weeks of CT led to reductions in systolic (p = 0.001) and diastolic (p = 0.017) blood pressure and improved motor skills post-intervention. Among 25 genes linked to AD, CT induced differentially methylated sites in 12 genes, predominantly showing hypomethylated sites (negative ß values). Interestingly, despite hypomethylated sites, some genes exhibited hypermethylated sites (positive ß values), such as ABCA7, BDNF, and WWOX. A 14-week CT regimen was adequate to induce differential methylation in 12 CE-related genes in healthy older women, alongside improvements in motor skills and blood pressure. In conclusion, this study suggest that combined training can be a strategy to improve physical fitness in older individuals, especially able to induce methylation alterations in genes sites related to development of AD. It is important to highlight that training should act as protective factor in older adults.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Metilación de ADN , Ejercicio Físico , Procesamiento Proteico-Postraduccional , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA