Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mycoses ; 63(6): 610-616, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32301521

RESUMEN

BACKGROUND: Trichophyton rubrum is the most common aetiological agent of human dermatophytoses. These infections mainly occur in keratinised layers such as skin, hair and nails because the fungus uses keratin as a nutrient source. Fluconazole and amphotericin are antifungal agents most commonly used to treat dermatophytoses and acts on cell membrane ergosterol. Despite the clinical importance of T rubrum, the mechanisms underlying the fungal-host relationship have not yet been clarified. Tandem repeats (TRs) are short DNA sequences that are involved in a variety of adaptive functions, including the process of fungal infection. It is known that the larger the number of TRs in the genome, the greater the capacity of cell-cell junction and surface adhesion, especially when these repeats are present in regions encoding cell surface proteins. OBJECTIVES: To identify in silico T rubrum genes containing TR patterns and to analyse the modulation of these genes in culture medium containing keratin (a model simulating skin infection) and antifungal drugs. METHODS: The Dermatophyte Tandem Repeats Database (DTRDB) and the FaaPred tool were used to identify four T rubrum genes containing TR patterns. Quantitative real-time (RT) PCR was used to evaluate the gene expression during the growth of T rubrum on keratin and in the presence of fluconazole, amphotericin B and Congo red (acts in the cell wall). RESULTS: The expression of these genes was found to be induced in culture medium containing keratin. In addition, these genes were induced in the presence of antifungal agents, especially fluconazole, indicating an adaptive response to the stress caused by this drug. CONCLUSION: The results suggest an important role of genes containing TRs in the fungal-host interaction and in the susceptibility to inhibitory compounds, indicating these sequences as new potential targets for the development of antifungal agents.


Asunto(s)
Arthrodermataceae/efectos de los fármacos , Arthrodermataceae/genética , Dermatomicosis/tratamiento farmacológico , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Secuencias Repetidas en Tándem , Antifúngicos/farmacología , Medios de Cultivo , Proteínas Fúngicas/genética , Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Queratinas/farmacología , Pruebas de Sensibilidad Microbiana , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética
2.
J Fungi (Basel) ; 9(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37233274

RESUMEN

Although most mycoses are superficial, the dermatophyte Trichophyton rubrum can cause systemic infections in patients with a weakened immune system, resulting in serious and deep lesions. The aim of this study was to analyze the transcriptome of a human monocyte/macrophage cell line (THP-1) co-cultured with inactivated germinated T. rubrum conidia (IGC) in order to characterize deep infection. Analysis of macrophage viability by lactate dehydrogenase quantification showed the activation of the immune system after 24 h of contact with live germinated T. rubrum conidia (LGC). After standardization of the co-culture conditions, the release of the interleukins TNF-α, IL-8, and IL-12 was quantified. The greater release of IL-12 was observed during co-culturing of THP-1 with IGC, while there was no change in the other cytokines. Next-generation sequencing of the response to T. rubrum IGC identified the modulation of 83 genes; of these, 65 were induced and 18 were repressed. The categorization of the modulated genes showed their involvement in signal transduction, cell communication, and immune response pathways. In total, 16 genes were selected for validation and Pearson's correlation coefficient was 0.98, indicating a high correlation between RNA-seq and qPCR. Modulation of the expression of all genes was similar for LGC and IGC co-culture; however, the fold-change values were higher for LGC. Due to the high expression of the IL-32 gene in RNA-seq, we quantified this interleukin and observed an increased release in co-culture with T. rubrum. In conclusion, the macrophages-T. rubrum co-culture model revealed the ability of these cells to modulate the immune response, as demonstrated by the release of proinflammatory cytokines and the RNA-seq gene expression profile. The results obtained permit to identify possible molecular targets that are modulated in macrophages and that could be explored in antifungal therapies involving the activation of the immune system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA