Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 186(19): 4059-4073.e27, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37611581

RESUMEN

Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.


Asunto(s)
Antibacterianos , Bacterias , Microbiología del Suelo , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bioensayo , Difosfatos
2.
J Am Chem Soc ; 139(20): 6795-6798, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28482153

RESUMEN

The N-acetylglucosaminidase NagZ of Pseudomonas aeruginosa catalyzes the first cytoplasmic step in recycling of muropeptides, cell-wall-derived natural products. This reaction regulates gene expression for the ß-lactam resistance enzyme, ß-lactamase. The enzyme catalyzes hydrolysis of N-acetyl-ß-d-glucosamine-(1→4)-1,6-anhydro-N-acetyl-ß-d-muramyl-peptide (1) to N-acetyl-ß-d-glucosamine (2) and 1,6-anhydro-N-acetyl-ß-d-muramyl-peptide (3). The structural and functional aspects of catalysis by NagZ were investigated by a total of seven X-ray structures, three computational models based on the X-ray structures, molecular-dynamics simulations and mutagenesis. The structural insights came from the unbound state and complexes of NagZ with the substrate, products and a mimetic of the transient oxocarbenium species, which were prepared by synthesis. The mechanism involves a histidine as acid/base catalyst, which is unique for glycosidases. The turnover process utilizes covalent modification of D244, requiring two transition-state species and is regulated by coordination with a zinc ion. The analysis provides a seamless continuum for the catalytic cycle, incorporating large motions by four loops that surround the active site.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Peptidoglicano/biosíntesis , Pseudomonas aeruginosa/enzimología , Biocatálisis , Cristalografía por Rayos X , Modelos Moleculares , Peptidoglicano/química
3.
Angew Chem Int Ed Engl ; 55(24): 6882-6, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27111486

RESUMEN

Muropeptides are a group of bacterial natural products generated from the cell wall in the course of its turnover. These compounds are cell-wall recycling intermediates and are also involved in signaling within the bacterium. However, the identity of these signaling molecules remains elusive. The identification and characterization of 20 muropeptides from Pseudomonas aeruginosa is described. The least abundant of these metabolites is present at 100 and the most abundant at 55,000 molecules per bacterium. Analysis of these muropeptides under conditions of induction of resistance to a ß-lactam antibiotic identified two signaling muropeptides (N-acetylglucosamine-1,6-anhydro-N-acetylmuramyl pentapeptide and 1,6-anhydro-N-acetylmuramyl pentapeptide). Authentic synthetic samples of these metabolites were shown to activate expression of ß-lactamase in the absence of any ß-lactam antibiotic, thus indicating that they serve as chemical signals in this complex biochemical pathway.


Asunto(s)
Antibacterianos/farmacología , Péptidos/metabolismo , Pseudomonas aeruginosa/química , Resistencia betalactámica/efectos de los fármacos , beta-Lactamas/farmacología , Antibacterianos/química , Conformación Molecular , Péptidos/química , Pseudomonas aeruginosa/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamas/química
4.
Protein Sci ; 33(7): e5038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38864725

RESUMEN

Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 µM) include PBPs (PBP1a, KD = 0.07 µM; PBP5 = 0.4 µM); other lytic transglycosylases (SltB2, KD = 0.09 µM; RlpA, KD = 0.4 µM); a type VI secretion system effector (Tse5, KD = 0.3 µM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 µM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.


Asunto(s)
Proteínas Bacterianas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Periplasma/metabolismo , Periplasma/enzimología , Proteínas Periplasmáticas/metabolismo , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Peptidoglicano/metabolismo , Peptidoglicano/química
5.
ACS Infect Dis ; 10(6): 1958-1969, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38841740

RESUMEN

About 100,000 deaths are attributed annually to infections with methicillin-resistant Staphylococcus aureus (MRSA) despite concerted efforts toward vaccine development and clinical trials involving several preclinically efficacious drug candidates. This necessitates the development of alternative therapeutic options against this drug-resistant bacterial pathogen. Using the Masuda borylation-Suzuki coupling (MBSC) sequence, we previously synthesized and modified naturally occurring bisindole alkaloids, alocasin A, hyrtinadine A and scalaradine A, resulting in derivatives showing potent in vitro and in vivo antibacterial efficacy. Here, we report on a modified one-pot MBSC protocol for the synthesis of previously reported and several undescribed N-tosyl-protected bisindoles with anti-MRSA activities and moderate cytotoxicity against human monocytic and kidney cell lines. In continuation of the mode of action investigation of the previously synthesized membrane-permeabilizing hit compounds, mechanistic studies reveal that bisindoles impact the cytoplasmic membrane of Gram-positive bacteria by promiscuously interacting with lipid II and membrane phospholipids while rapidly dissipating membrane potential. The bactericidal and lipid II-interacting lead compounds 5c and 5f might be interesting starting points for drug development in the fight against MRSA.


Asunto(s)
Antibacterianos , Alcaloides Indólicos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Humanos , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Alcaloides Indólicos/síntesis química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Línea Celular , Relación Estructura-Actividad , Indoles/farmacología , Indoles/química , Indoles/síntesis química , Estructura Molecular
6.
Int J Biol Macromol ; 267(Pt 1): 131420, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583835

RESUMEN

Natural product bulgecin A potentiates the activity of ß-lactam antibiotics by inhibition of three lytic transglycosylases in Pseudomonas aeruginosa, of which MltD is one. MltD exhibits both endolytic and exolytic reactions in the turnover of the cell-wall peptidoglycan and tolerates the presence or absence of stem peptides in its substrates. The present study reveals structural features of the multimodular MltD, presenting a catalytic module and four cell-wall-binding LysM modules that account for these attributes. Three X-ray structures are reported herein for MltD that disclose one unpredicted LysM module tightly attached to the catalytic domain, whereas the other LysM modules are mobile, and connected to the catalytic domain through long flexible linkers. The formation of crystals depended on the presence of bulgecin A. The expansive active-site cleft is highlighted by the insertion of a helical region, a hallmark of the family 1D of lytic transglycosylases, which was mapped out in a ternary complex of MltD:bulgecinA:chitotetraose, revealing at the minimum the presence of eight subsites (from -4 to +4, with the seat of reaction at subsites -1 and + 1) for binding of sugars of the substrate for the endolytic reaction. The mechanism of the exolytic reaction is revealed in one of the structures, showing how the substrate's terminal anhydro-NAM moiety could be sequestered at subsite +2. Our results provide the structural insight for both the endolytic and exolytic activities of MltD during cell-wall-turnover events.


Asunto(s)
Dominio Catalítico , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimología , Modelos Moleculares , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacología , Cristalografía por Rayos X , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pared Celular , Especificidad por Sustrato
7.
Sci Transl Med ; 16(759): eabo4736, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110780

RESUMEN

Gram-positive bacterial infections present a major clinical challenge, with methicillin- and vancomycin-resistant strains continuing to be a cause for concern. In recent years, semisynthetic vancomycin derivatives have been developed to overcome this problem as exemplified by the clinically used telavancin, which exhibits increased antibacterial potency but has also raised toxicity concerns. Thus, glycopeptide antibiotics with enhanced antibacterial activities and improved safety profiles are still necessary. We describe the development of a class of highly potent semisynthetic glycopeptide antibiotics, the guanidino lipoglycopeptides, which contain a positively charged guanidino moiety bearing a variable lipid group. These glycopeptides exhibited enhanced in vitro activity against a panel of Gram-positive bacteria including clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant strains, showed minimal toxicity toward eukaryotic cells, and had a low propensity for resistance selection. Mechanistically, guanidino lipoglycopeptides engaged with bacterial cell wall precursor lipid II with a higher binding affinity than vancomycin. Binding to both wild-type d-Ala-d-Ala lipid II and the vancomycin-resistant d-Ala-d-Lac variant was confirmed, providing insight into the enhanced activity of guanidino lipoglycopeptides against vancomycin-resistant isolates. The in vivo efficacy of guanidino lipoglycopeptide EVG7 was evaluated in a S. aureus murine thigh infection model and a 7-day sepsis survival study, both of which demonstrated superiority to vancomycin. Moreover, the minimal to mild kidney effects at supratherapeutic doses of EVG7 indicate an improved therapeutic safety profile compared with vancomycin. These findings position guanidino lipoglycopeptides as candidates for further development as antibacterial agents for the treatment of clinically relevant multidrug-resistant Gram-positive infections.


Asunto(s)
Antibacterianos , Lipoglucopéptidos , Pruebas de Sensibilidad Microbiana , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Lipoglucopéptidos/farmacología , Lipoglucopéptidos/uso terapéutico , Ratones , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Glicopéptidos/farmacología , Glicopéptidos/química , Glicopéptidos/uso terapéutico , Bacterias Grampositivas/efectos de los fármacos , Femenino
8.
Elife ; 122023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876902

RESUMEN

Antibiotic tolerance and antibiotic resistance are the two major obstacles to the efficient and reliable treatment of bacterial infections. Identifying antibiotic adjuvants that sensitize resistant and tolerant bacteria to antibiotic killing may lead to the development of superior treatments with improved outcomes. Vancomycin, a lipid II inhibitor, is a frontline antibiotic for treating methicillin-resistant Staphylococcus aureus and other Gram-positive bacterial infections. However, vancomycin use has led to the increasing prevalence of bacterial strains with reduced susceptibility to vancomycin. Here, we show that unsaturated fatty acids act as potent vancomycin adjuvants to rapidly kill a range of Gram-positive bacteria, including vancomycin-tolerant and resistant populations. The synergistic bactericidal activity relies on the accumulation of membrane-bound cell wall intermediates that generate large fluid patches in the membrane leading to protein delocalization, aberrant septal formation, and loss of membrane integrity. Our findings provide a natural therapeutic option that enhances vancomycin activity against difficult-to-treat pathogens, and the underlying mechanism may be further exploited to develop antimicrobials that target recalcitrant infection.


Asunto(s)
Infecciones por Bacterias Grampositivas , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Vancomicina/farmacología , Ácidos Grasos , Infecciones por Bacterias Grampositivas/microbiología , Pruebas de Sensibilidad Microbiana
9.
bioRxiv ; 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37292624

RESUMEN

Antimicrobial resistance is a leading mortality factor worldwide. Here we report the discovery of clovibactin, a new antibiotic, isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant bacterial pathogens without detectable resistance. Using biochemical assays, solid-state NMR, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C 55 PP, Lipid II, Lipid WTA ). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate, but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the irreversible sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. Uncultured bacteria offer a rich reservoir of antibiotics with new mechanisms of action that could replenish the antimicrobial discovery pipeline.

10.
Commun Biol ; 5(1): 1314, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451021

RESUMEN

The protein networks of cell-wall-biosynthesis assemblies are largely unknown. A key class of enzymes in these assemblies is the lytic transglycosylases (LTs), of which eleven exist in P. aeruginosa. We have undertaken a pulldown strategy in conjunction with mass-spectrometry-based proteomics to identify the putative binding partners for the eleven LTs of P. aeruginosa. A total of 71 putative binding partners were identified for the eleven LTs. A systematic assessment of the binding partners of the rare lipoprotein A (RlpA), one of the pseudomonal LTs, was made. This 37-kDa lipoprotein is involved in bacterial daughter-cell separation by an unknown process. RlpA participates in both the multi-protein and multi-enzyme divisome and elongasome assemblies. We reveal an extensive protein-interaction network for RlpA involving at least 19 proteins. Their kinetic parameters for interaction with RlpA were assessed by microscale thermophoresis, surface-plasmon resonance, and isothermal-titration calorimetry. Notable RlpA binding partners include PBP1b, PBP4, and SltB1. Elucidation of the protein-interaction networks for each of the LTs, and specifically for RlpA, opens opportunities for the study of their roles in the complex protein assemblies intimately involved with the cell wall as a structural edifice critical for bacterial survival.


Asunto(s)
Lipoproteína(a) , Pseudomonas aeruginosa , Glicosiltransferasas , Pared Celular , Mapas de Interacción de Proteínas
13.
ACS Med Chem Lett ; 12(6): 991-995, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34141083

RESUMEN

Clostridioides difficile is a leading health threat. This pathogen initiates intestinal infections during gut microbiota dysbiosis caused by oral administration of antibiotics. C. difficile is difficult to eradicate due to its ability to form spores, which are not susceptible to antibiotics. To address the urgent need for treating recurrent C. difficile infection, antibiotics that selectively target C. difficile over common gut microbiota are needed. We herein describe the class of picolinamide antibacterials which show potent and selective activity against C. difficile. The structure-activity relationship of 108 analogues of isonicotinamide 4, a compound that is equally active against methicillin-resistant Staphylococcus aureus and C. difficile, was investigated. Introduction of the picolinamide core as exemplified by analogue 87 resulted in exquisite potency and selectivity against C. difficile. The ability of the picolinamide class to selectively target C. difficile and to prevent gut dysbiosis holds promise for the treatment of recurrent C. difficile infection.

14.
ACS Chem Biol ; 15(1): 189-196, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31877028

RESUMEN

BglX is a heretofore uncharacterized periplasmic glycoside hydrolase (GH) of the human pathogen Pseudomonas aeruginosa. X-ray analysis identifies it as a protein homodimer. The two active sites of the homodimer comprise catalytic residues provided by each monomer. This arrangement is seen in <2% of the hydrolases of known structure. In vitro substrate profiling shows BglX is a catalyst for ß-(1→2) and ß-(1→3) saccharide hydrolysis. Saccharides with ß-(1→4) or ß-(1→6) bonds, and the ß-(1→4) muropeptides from the cell-wall peptidoglycan, are not substrates. Additional structural insights from X-ray analysis (including structures of a mutant enzyme-derived Michaelis complex, two transition-state mimetics, and two enzyme-product complexes) enabled the comprehensive description of BglX catalysis. The half-chair (4H3) conformation of the transition-state oxocarbenium species, the approach of the hydrolytic water molecule to the oxocarbenium species, and the stepwise release of the two reaction products were also visualized. The substrate pattern for BglX aligns with the [ß-(1→2)-Glc]x and [ß-(1→3)-Glc]x periplasmic osmoregulated periplasmic glucans, and possibly with the Psl exopolysaccharides, of P. aeruginosa. Both polysaccharides are implicated in biofilm formation. Accordingly, we show that inactivation of the bglX gene of P. aeruginosa PAO1 attenuates biofilm formation.


Asunto(s)
Biopelículas , Glicósido Hidrolasas/metabolismo , Peptidoglicano/metabolismo , Polisacáridos/química , Pseudomonas aeruginosa/enzimología , Catálisis , Dominio Catalítico , Membrana Celular/metabolismo , Cristalografía por Rayos X , Regulación de la Expresión Génica , Glicósido Hidrolasas/genética , Humanos , Hidrólisis , Modelos Moleculares , Mutación , Unión Proteica , Multimerización de Proteína , Pseudomonas aeruginosa/genética , Relación Estructura-Actividad
15.
ACS Med Chem Lett ; 10(8): 1148-1153, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31413798

RESUMEN

ß-Lactams are used routinely to treat Staphylococcus aureus infections. However, the emergence of methicillin-resistant S. aureus (MRSA) renders them clinically precarious. We describe a class of cinnamonitrile adjuvants that restore the activity of oxacillin (a penicillin member of the ß-lactams) against MRSA. The lead adjuvants were tested against six important strains of MRSA, one vancomycin-intermediate S. aureus (VISA) strain, and one linezolid-resistant S. aureus strain. Five compounds out of 84 total compounds showed broad potentiation. At 8 µM (E)-3-(5-(3,4-dichlorobenzyl)-2-(trifluoromethoxy)phenyl)-2-(methylsulfonyl)acrylonitrile (26) potentiated oxacillin with a >4000-fold reduction of its MIC (from 256 to 0.06 mg·L-1). This class of adjuvants holds promise for reversal of the resistance phenotype of MRSA.

16.
Nat Commun ; 10(1): 5567, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804467

RESUMEN

SPOR domains are widely present in bacterial proteins that recognize cell-wall peptidoglycan strands stripped of the peptide stems. This type of peptidoglycan is enriched in the septal ring as a product of catalysis by cell-wall amidases that participate in the separation of daughter cells during cell division. Here, we document binding of synthetic denuded glycan ligands to the SPOR domain of the lytic transglycosylase RlpA from Pseudomonas aeruginosa (SPOR-RlpA) by mass spectrometry and structural analyses, and demonstrate that indeed the presence of peptide stems in the peptidoglycan abrogates binding. The crystal structures of the SPOR domain, in the apo state and in complex with different synthetic glycan ligands, provide insights into the molecular basis for recognition and delineate a conserved pattern in other SPOR domains. The biological and structural observations presented here are followed up by molecular-dynamics simulations and by exploration of the effect on binding of distinct peptidoglycan modifications.


Asunto(s)
Pared Celular/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Peptidoglicano/química , Dominios Proteicos , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Secuencia de Carbohidratos , Pared Celular/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Simulación de Dinámica Molecular , Peptidoglicano/metabolismo , Unión Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo
17.
PLoS One ; 10(4): e0122110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25849314

RESUMEN

Heterologous overexpression of foreign proteins in Escherichia coli often leads to insoluble aggregates of misfolded inactive proteins, so-called inclusion bodies. To solve this problem use of chaperones or in vitro refolding procedures are the means of choice. These methods are time consuming and cost intensive, due to additional purification steps to get rid of the chaperons or the process of refolding itself. We describe an easy to use lab-scale method to avoid formation of inclusion bodies. The method systematically combines use of co-solvents, usually applied for in vitro stabilization of biologicals in biopharmaceutical formulation, and periplasmic expression and can be completed in one week using standard equipment in any life science laboratory. Demonstrating the unique power of our method, we overproduced and purified for the first time an active chlamydial penicillin-binding protein, demonstrated its function as penicillin sensitive DD-carboxypeptidase and took a major leap towards understanding the "chlamydial anomaly."


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydia/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Solventes/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Betaína/química , Dominio Catalítico , Clonación Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
18.
Artículo en Inglés | MEDLINE | ID: mdl-24616885

RESUMEN

For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.


Asunto(s)
Alanina Racemasa/metabolismo , Alanina/metabolismo , Chlamydophila pneumoniae/enzimología , Glicina Hidroximetiltransferasa/metabolismo , Alanina Racemasa/genética , Chlamydophila pneumoniae/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Nat Commun ; 5: 4201, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24953137

RESUMEN

Intracellular Chlamydiaceae do not need to resist osmotic challenges and a functional cell wall was not detected in these pathogens. Nevertheless, a recent study revealed evidence for circular peptidoglycan-like structures in Chlamydiaceae and penicillin inhibits cytokinesis, a phenomenon known as the chlamydial anomaly. Here, by characterizing a cell wall precursor-processing enzyme, we provide insights into the mechanisms underlying this mystery. We show that AmiA from Chlamydia pneumoniae separates daughter cells in an Escherichia coli amidase mutant. Contrary to homologues from free-living bacteria, chlamydial AmiA uses lipid II as a substrate and has dual activity, acting as an amidase and a carboxypeptidase. The latter function is penicillin sensitive and assigned to a penicillin-binding protein motif. Consistent with the lack of a regulatory domain in AmiA, chlamydial CPn0902, annotated as NlpD, is a carboxypeptidase, rather than an amidase activator, which is the case for E. coli NlpD. Functional conservation of AmiA implicates a role in cytokinesis and host response modulation.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Chlamydophila pneumoniae/enzimología , Penicilinas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Amidohidrolasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Carboxipeptidasas/química , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Pared Celular/enzimología , Pared Celular/genética , Pared Celular/metabolismo , Chlamydophila pneumoniae/citología , Chlamydophila pneumoniae/efectos de los fármacos , Chlamydophila pneumoniae/genética , Citocinesis , Datos de Secuencia Molecular , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA