Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27695000

RESUMEN

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Células Progenitoras Linfoides/fisiología , Células Progenitoras Mieloides/fisiología , Receptores Notch/metabolismo , Linfocitos T/fisiología , Timo/inmunología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Feto , Regulación del Desarrollo de la Expresión Génica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
2.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982461

RESUMEN

Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-h intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled timecourse of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-seq to transcriptionally determine cell fates of grafted primitive streak regions after 24 h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.


Asunto(s)
Gastrulación , Organogénesis , Ratones , Animales , Diferenciación Celular , Organogénesis/genética , Línea Primitiva , Endotelio , Embrión de Mamíferos , Mamíferos
3.
Genome Res ; 31(7): 1159-1173, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34088716

RESUMEN

Regulatory interactions mediated by transcription factors (TFs) make up complex networks that control cellular behavior. Fully understanding these gene regulatory networks (GRNs) offers greater insight into the consequences of disease-causing perturbations than can be achieved by studying single TF binding events in isolation. Chromosomal translocations of the lysine methyltransferase 2A (KMT2A) gene produce KMT2A fusion proteins such as KMT2A-AFF1 (previously MLL-AF4), causing poor prognosis acute lymphoblastic leukemias (ALLs) that sometimes relapse as acute myeloid leukemias (AMLs). KMT2A-AFF1 drives leukemogenesis through direct binding and inducing the aberrant overexpression of key genes, such as the anti-apoptotic factor BCL2 and the proto-oncogene MYC However, studying direct binding alone does not incorporate possible network-generated regulatory outputs, including the indirect induction of gene repression. To better understand the KMT2A-AFF1-driven regulatory landscape, we integrated ChIP-seq, patient RNA-seq, and CRISPR essentiality screens to generate a model GRN. This GRN identified several key transcription factors such as RUNX1 that regulate target genes downstream of KMT2A-AFF1 using feed-forward loop (FFL) and cascade motifs. A core set of nodes are present in both ALL and AML, and CRISPR screening revealed several factors that help mediate response to the drug venetoclax. Using our GRN, we then identified a KMT2A-AFF1:RUNX1 cascade that represses CASP9, as well as KMT2A-AFF1-driven FFLs that regulate BCL2 and MYC through combinatorial TF activity. This illustrates how our GRN can be used to better connect KMT2A-AFF1 behavior to downstream pathways that contribute to leukemogenesis, and potentially predict shifts in gene expression that mediate drug response.

4.
Nature ; 518(7540): 547-51, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25470051

RESUMEN

Most haematopoietic cells renew from adult haematopoietic stem cells (HSCs), however, macrophages in adult tissues can self-maintain independently of HSCs. Progenitors with macrophage potential in vitro have been described in the yolk sac before emergence of HSCs, and fetal macrophages can develop independently of Myb, a transcription factor required for HSC, and can persist in adult tissues. Nevertheless, the origin of adult macrophages and the qualitative and quantitative contributions of HSC and putative non-HSC-derived progenitors are still unclear. Here we show in mice that the vast majority of adult tissue-resident macrophages in liver (Kupffer cells), brain (microglia), epidermis (Langerhans cells) and lung (alveolar macrophages) originate from a Tie2(+) (also known as Tek) cellular pathway generating Csf1r(+) erythro-myeloid progenitors (EMPs) distinct from HSCs. EMPs develop in the yolk sac at embryonic day (E) 8.5, migrate and colonize the nascent fetal liver before E10.5, and give rise to fetal erythrocytes, macrophages, granulocytes and monocytes until at least E16.5. Subsequently, HSC-derived cells replace erythrocytes, granulocytes and monocytes. Kupffer cells, microglia and Langerhans cells are only marginally replaced in one-year-old mice, whereas alveolar macrophages may be progressively replaced in ageing mice. Our fate-mapping experiments identify, in the fetal liver, a sequence of yolk sac EMP-derived and HSC-derived haematopoiesis, and identify yolk sac EMPs as a common origin for tissue macrophages.


Asunto(s)
Linaje de la Célula , Eritrocitos/citología , Hematopoyesis , Macrófagos/citología , Células Madre/citología , Saco Vitelino/citología , Animales , Proliferación Celular , Rastreo Celular , Femenino , Feto/citología , Granulocitos/citología , Macrófagos del Hígado/citología , Células de Langerhans/citología , Hígado/citología , Hígado/embriología , Macrófagos Alveolares/citología , Masculino , Ratones , Microglía/citología , Monocitos/citología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor TIE-2/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo
5.
Nucleic Acids Res ; 47(14): 7402-7417, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31127293

RESUMEN

The CRISPR system is widely used in genome editing for biomedical research. Here, using either dual paired Cas9D10A nickases or paired Cas9 nuclease we characterize unintended larger deletions at on-target sites that frequently evade common genotyping practices. We found that unintended larger deletions are prevalent at multiple distinct loci on different chromosomes, in cultured cells and mouse embryos alike. We observed a high frequency of microhomologies at larger deletion breakpoint junctions, suggesting the involvement of microhomology-mediated end joining in their generation. In populations of edited cells, the distribution of larger deletion sizes is dependent on proximity to sgRNAs and cannot be predicted by microhomology sequences alone.


Asunto(s)
Sistemas CRISPR-Cas , Deleción Cromosómica , Cromosomas de los Mamíferos/genética , Edición Génica/métodos , Eliminación de Secuencia , Animales , Línea Celular , Puntos de Rotura del Cromosoma , Cromosomas de los Mamíferos/metabolismo , Reparación del ADN por Unión de Extremidades , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Ratones , Modelos Genéticos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
6.
IUBMB Life ; 72(1): 45-52, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31634421

RESUMEN

Runx1 is an important haematopoietic transcription factor as stressed by its involvement in a number of haematological malignancies. Furthermore, it is a key regulator of the emergence of the first haematopoietic stem cells (HSCs) during development. The transcription factor Gata3 has also been linked to haematological disease and was shown to promote HSC production in the embryo by inducing the secretion of important niche factors. Both proteins are expressed in several different cell types within the aorta-gonads-mesonephros (AGM) region, in which the first HSCs are generated; however, a direct interaction between these two key transcription factors in the context of embryonic HSC production has not formally been demonstrated. In this current study, we have detected co-localisation of Runx1 and Gata3 in rare sub-aortic mesenchymal cells in the AGM. Furthermore, the expression of Runx1 is reduced in Gata3 -/- embryos, which also display a shift in HSC emergence. Using an AGM-derived cell line as a model for the stromal microenvironment in the AGM and performing ChIP-Seq and ChIP-on-chip experiments, we demonstrate that Runx1, together with other key niche factors, is a direct target gene of Gata3. In addition, we can pinpoint Gata3 binding to the Runx1 locus at specific enhancer elements which are active in the microenvironment. These results reveal a direct interaction between Gata3 and Runx1 in the niche that supports embryonic HSCs and highlight a dual role for Runx1 in driving the transdifferentiation of haemogenic endothelial cells into HSCs as well as in the stromal cells that support this process.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Embrión de Mamíferos/citología , Desarrollo Embrionario , Endotelio Vascular/citología , Factor de Transcripción GATA3/metabolismo , Células Madre Hematopoyéticas/citología , Animales , Aorta/citología , Aorta/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Embrión de Mamíferos/metabolismo , Endotelio Vascular/metabolismo , Femenino , Factor de Transcripción GATA3/genética , Gónadas/citología , Gónadas/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Mesonefro/citología , Mesonefro/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
Blood ; 131(20): 2223-2234, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29555646

RESUMEN

Despite the well-established cell-intrinsic role of epigenetic factors in normal and malignant hematopoiesis, their cell-extrinsic role remains largely unexplored. Herein we investigated the hematopoietic impact of inactivating Ezh2, a key component of polycomb repressive complex 2 (PRC2), in the fetal liver (FL) vascular niche. Hematopoietic specific (Vav-iCre) Ezh2 inactivation enhanced FL hematopoietic stem cell (HSC) expansion with normal FL erythropoiesis. In contrast, endothelium (Tie2-Cre) targeted Ezh2 inactivation resulted in embryonic lethality with severe anemia at embryonic day 13.5 despite normal emergence of functional HSCs. Ezh2-deficient FL endothelium overexpressed Mmp9, which cell-extrinsically depleted the membrane-bound form of Kit ligand (mKitL), an essential hematopoietic cytokine, in FL. Furthermore, Mmp9 inhibition in vitro restored mKitL expression along with the erythropoiesis supporting capacity of FL endothelial cells. These data establish that Ezh2 is intrinsically dispensable for FL HSCs and provides proof of principle that modulation of epigenetic regulators in niche components can exert a marked cell-extrinsic impact.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Feto , Hematopoyesis Extramedular , Hígado/fisiología , Anemia/genética , Anemia/metabolismo , Animales , Biomarcadores , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Silenciador del Gen , Hematopoyesis Extramedular/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Inmunohistoquímica , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Fenotipo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Factor de Células Madre/metabolismo
8.
Dev Biol ; 424(2): 236-245, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28189604

RESUMEN

Hematopoietic stem cells (HSCs) emerge during development via an endothelial-to-hematopoietic transition from hemogenic endothelium of the dorsal aorta (DA). Using in situ hybridization and analysis of a knock-in RedStar reporter, we show that the transcriptional regulator Hhex is expressed in endothelium of the dorsal aorta (DA) and in clusters of putative HSCs as they are specified during murine development. We exploited this observation, using the Hhex locus to define cis regulatory elements, enhancers and interacting transcription factors that are both necessary and sufficient to support gene expression in the emerging HSC. We identify an evolutionarily conserved non-coding region (ECR) in the Hhex locus with the capacity to bind the hematopoietic-affiliated transcriptional regulators Gata2, SCL, Fli1, Pu.1 and Ets1/2. This region is sufficient to drive the expression of a transgenic GFP reporter in the DA endothelium and intra-aortic hematopoietic clusters. GFP-positive AGM cells co-expressed HSC-associated markers c-Kit, CD34, VE-Cadherin, and CD45, and were capable of multipotential differentiation and long term engraftment when transplanted into myelo-ablated recipients. The Hhex ECR was also sufficient to drive expression at additional blood sites including the yolk sac blood islands, fetal liver, vitelline and umbilical arteries and the adult bone marrow, suggesting a common mechanism for Hhex regulation throughout ontogenesis of the blood system. To explore the physiological requirement for the Hhex ECR region during hematoendothelial development, we deleted the ECR element from the endogenous locus in the context of a targeted Hhex-RedStar reporter allele. Results indicate a specific requirement for the ECR in blood-associated Hhex expression during development and further demonstrate a requirement for this region in the adult HSC compartment. Taken together, our results identified the ECR region as an enhancer both necessary and sufficient for gene expression in HSC development and homeostasis. The Hhex ECR thus appears to be a core node for the convergence of the transcription factor network that governs the emergence of HSCs.


Asunto(s)
Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Compartimento Celular , Linaje de la Célula/genética , Ensayo de Unidades Formadoras de Colonias , Secuencia Conservada/genética , Embrión de Mamíferos/metabolismo , Sitios Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de Homeodominio/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética
9.
Development ; 141(20): 4018-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25252941

RESUMEN

Transcription factors (TFs) act within wider regulatory networks to control cell identity and fate. Numerous TFs, including Scl (Tal1) and PU.1 (Spi1), are known regulators of developmental and adult haematopoiesis, but how they act within wider TF networks is still poorly understood. Transcription activator-like effectors (TALEs) are a novel class of genetic tool based on the modular DNA-binding domains of Xanthomonas TAL proteins, which enable DNA sequence-specific targeting and the manipulation of endogenous gene expression. Here, we report TALEs engineered to target the PU.1-14kb and Scl+40kb transcriptional enhancers as efficient new tools to perturb the expression of these key haematopoietic TFs. We confirmed the efficiency of these TALEs at the single-cell level using high-throughput RT-qPCR, which also allowed us to assess the consequences of both PU.1 activation and repression on wider TF networks during developmental haematopoiesis. Combined with comprehensive cellular assays, these experiments uncovered novel roles for PU.1 during early haematopoietic specification. Finally, transgenic mouse studies confirmed that the PU.1-14kb element is active at sites of definitive haematopoiesis in vivo and PU.1 is detectable in haemogenic endothelium and early committing blood cells. We therefore establish TALEs as powerful new tools to study the functionality of transcriptional networks that control developmental processes such as early haematopoiesis.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transactivadores/fisiología , Animales , Diferenciación Celular , Técnicas de Cocultivo , Células Endoteliales/citología , Células Madre Hematopoyéticas , Humanos , Células K562 , Ratones , Ratones Transgénicos , Fenotipo , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Transgenes , Xanthomonas/metabolismo
10.
Adv Exp Med Biol ; 962: 47-64, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28299650

RESUMEN

The de novo generation of hematopoietic stem and progenitor cells (HSPC) occurs solely during embryogenesis from a population of epithelial cells called hemogenic endothelium (HE). During midgestation HE cells in multiple intra- and extraembryonic vascular beds leave the vessel wall as they transition into HSPCs in a process termed the endothelial to hematopoietic transition (EHT). Runx1 expression in HE cells orchestrates the transcriptional switch necessary for the transdifferentiation of endothelial cells into functional HSPCs. Runx1 is widely considered the master regulator of developmental hematopoiesis because it plays an essential function during specification of the hematopoietic lineage during embryogenesis. Here we review the role of Runx1 in embryonic HSPC formation, with a particular focus on its role in hemogenic endothelium.


Asunto(s)
Células Sanguíneas/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Desarrollo Embrionario/fisiología , Hemangioblastos/metabolismo , Animales , Transdiferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Endotelio Vascular/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Células Madre/metabolismo
11.
Blood Cells Mol Dis ; 51(4): 206-12, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24095001

RESUMEN

Definitive hematopoietic cells are generated de novo during ontogeny from a specialized subset of endothelium, the so-called hemogenic endothelium. In this review we give a brief overview of the identification of hemogenic endothelium, explore its links with the HSC lineage, and summarize recent insights into the nature of hemogenic endothelium and the microenvironmental and intrinsic regulators contributing to its transition into blood. Ultimately, a better understanding of the processes controlling the transition of endothelium into blood will advance the generation and expansion of hematopoietic stem cells for therapeutic purposes.


Asunto(s)
Endotelio/fisiología , Hematopoyesis/fisiología , Animales , Linaje de la Célula , Transdiferenciación Celular , Microambiente Celular , Endotelio/embriología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Humanos , Factores de Transcripción/metabolismo
12.
Haematologica ; 98(2): 163-71, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22801971

RESUMEN

The first mouse adult-repopulating hematopoietic stem cells emerge in the aorta-gonad-mesonephros region at embryonic day (E) 10.5. Their numbers in this region increase thereafter and begin to decline at E12.5, thus pointing to the possible existence of both positive and negative regulators of emerging hematopoietic stem cells. Our recent expression analysis of the aorta-gonad-mesonephros region showed that the Delta-like homologue 1 (Dlk1) gene is up-regulated in the region of the aorta-gonad-mesonephros where hematopoietic stem cells are preferentially located. To analyze its function, we studied Dlk1 expression in wild-type and hematopoietic stem cell-deficient embryos and determined hematopoietic stem and progenitor cell activity in Dlk1 knockout and overexpressing mice. Its role in hematopoietic support was studied in co-culture experiments using stromal cell lines that express varying levels of Dlk1. We show here that Dlk1 is expressed in the smooth muscle layer of the dorsal aorta and the ventral sub-aortic mesenchyme, where its expression is dependent on the hematopoietic transcription factor Runx1. We further demonstrate that Dlk1 has a negative impact on hematopoietic stem and progenitor cell activity in the aorta-gonad-mesonephros region in vivo, which is recapitulated in co-cultures of hematopoietic stem cells on stromal cells that express varying levels of Dlk1. This negative effect of Dlk1 on hematopoietic stem and progenitor cell activity requires the membrane-bound form of the protein and cannot be recapitulated by soluble Dlk1. Together, these data suggest that Dlk1 expression by cells of the aorta-gonad-mesonephros hematopoietic microenvironment limits hematopoietic stem cell expansion and is, to our knowledge, the first description of such a negative regulator in this tissue.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Aorta/embriología , Aorta/metabolismo , Proteínas de Unión al Calcio , Membrana Celular/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Embrión de Mamíferos , Expresión Génica , Gónadas/embriología , Gónadas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Mesonefro/embriología , Mesonefro/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Transporte de Proteínas , Sistema Nervioso Simpático/metabolismo
13.
Nat Commun ; 14(1): 4645, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580379

RESUMEN

In mitosis, most transcription factors detach from chromatin, but some are retained and bookmark genomic sites. Mitotic bookmarking has been implicated in lineage inheritance, pluripotency and reprogramming. However, the biological significance of this mechanism in vivo remains unclear. Here, we address mitotic retention of the hemogenic factors GATA2, GFI1B and FOS during haematopoietic specification. We show that GATA2 remains bound to chromatin throughout mitosis, in contrast to GFI1B and FOS, via C-terminal zinc finger-mediated DNA binding. GATA2 bookmarks a subset of its interphase targets that are co-enriched for RUNX1 and other regulators of definitive haematopoiesis. Remarkably, homozygous mice harbouring the cyclin B1 mitosis degradation domain upstream Gata2 partially phenocopy knockout mice. Degradation of GATA2 at mitotic exit abolishes definitive haematopoiesis at aorta-gonad-mesonephros, placenta and foetal liver, but does not impair yolk sac haematopoiesis. Our findings implicate GATA2-mediated mitotic bookmarking as critical for definitive haematopoiesis and highlight a dependency on bookmarkers for lineage commitment.


Asunto(s)
Cromatina , Factor de Transcripción GATA2 , Mitosis , Animales , Ratones , Cromosomas/metabolismo , ADN , Hematopoyesis/genética , Factor de Transcripción GATA2/genética
14.
Blood ; 115(15): 3042-50, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20139099

RESUMEN

The transcription factor Runx1 is a pivotal regulator of definitive hematopoiesis in mouse ontogeny. Vertebrate Runx1 is transcribed from 2 promoters, the distal P1 and proximal P2, which provide a paradigm of the complex transcriptional and translational control of Runx1 function. However, very little is known about the biologic relevance of alternative Runx1 promoter usage in definitive hematopoietic cell emergence. Here we report that both promoters are active at the very onset of definitive hematopoiesis, with a skewing toward the P2. Moreover, functional and morphologic analysis of a novel P1-null and an attenuated P2 mouse model revealed that although both promoters play important nonredundant roles in the emergence of definitive hematopoietic cells, the proximal P2 was most critically required for this. The nature of the observed phenotypes is indicative of a differential contribution of the P1 and P2 promoters to the control of overall Runx1 levels, where and when this is most critically required. In addition, the dynamic expression of P1-Runx1 and P2-Runx1 points at a requirement for Runx1 early in development, when the P2 is still the prevalent promoter in the emerging hemogenic endothelium and/or first committed hematopoietic cells.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Hematopoyesis/genética , Regiones Promotoras Genéticas/genética , Envejecimiento/genética , Alelos , Animales , Aorta/metabolismo , Aorta/patología , Células de la Médula Ósea/metabolismo , Cadherinas/metabolismo , Agregación Celular , Recuento de Células , Ensayo de Unidades Formadoras de Colonias , Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Pérdida del Embrión/genética , Pérdida del Embrión/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Sitios Genéticos/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones , Modelos Genéticos , Mutación/genética
15.
Nat Commun ; 13(1): 773, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140205

RESUMEN

The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increase in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells is associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletion of promoter-proximal CTCF sites at the sub-TAD boundaries has no obvious effects on E-P interactions but leads to partial loss of domain structure, mildly affects gene expression, and delays hematopoietic development. Together, our analysis of gene regulation at a large multi-promoter developmental gene reveals that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.


Asunto(s)
Cromatina/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Expresión Génica , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , ADN/química , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Mesodermo/metabolismo , Ratones , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas
16.
Blood ; 113(21): 5121-4, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19321859

RESUMEN

The transcription factor Runx1 plays a pivotal role in hematopoietic stem cell (HSC) emergence, and studies into its transcriptional regulation should give insight into the critical steps of HSC specification. Recently, we identified the Runx1 +23 enhancer that targets reporter gene expression to the first emerging HSCs of the mouse embryo when linked to the heterologous hsp68 promoter. Endogenous Runx1 is transcribed from 2 alternative promoters, P1 and P2. Here, we examined the in vivo cis-regulatory potential of these alternative promoters and asked whether they act with and contribute to the spatiotemporal specific expression of the Runx1 +23 enhancer. Our results firmly establish that, in contrast to zebrafish runx1, mouse Runx1 promoter sequences do not confer any hematopoietic specificity in transgenic embryos. Yet, both mouse promoters act with the +23 enhancer to drive reporter gene expression to sites of HSC emergence and colonization, in a +23-specific pattern.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Elementos de Facilitación Genéticos , Células Madre Hematopoyéticas/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética , Animales , Embrión de Mamíferos , Células Madre Hematopoyéticas/citología , Ratones , Ratones Transgénicos , Especificidad de la Especie
17.
Nat Commun ; 12(1): 7019, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857757

RESUMEN

Yolk sac (YS) hematopoiesis is critical for the survival of the embryo and a major source of tissue-resident macrophages that persist into adulthood. Yet, the transcriptional and epigenetic regulation of YS hematopoiesis remains poorly characterized. Here we report that the epigenetic regulator Ezh2 is essential for YS hematopoiesis but dispensable for subsequent aorta-gonad-mesonephros (AGM) blood development. Loss of EZH2 activity in hemogenic endothelium (HE) leads to the generation of phenotypically intact but functionally deficient erythro-myeloid progenitors (EMPs), while the generation of primitive erythroid cells is not affected. EZH2 activity is critical for the generation of functional EMPs at the onset of the endothelial-to-hematopoietic transition but subsequently dispensable. We identify a lack of Wnt signaling downregulation as the primary reason for the production of non-functional EMPs. Together, our findings demonstrate a critical and stage-specific role of Ezh2 in modulating Wnt signaling during the generation of EMPs from YS HE.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Células Eritroides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Células Progenitoras Mieloides/metabolismo , Proteínas de Transporte Vesicular/genética , Saco Vitelino/metabolismo , Animales , Diferenciación Celular , Embrión de Mamíferos , Proteína Potenciadora del Homólogo Zeste 2/deficiencia , Epigénesis Genética , Células Eritroides/citología , Femenino , Feto , Genes Reporteros , Hematopoyesis/genética , Hígado/citología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Células Progenitoras Mieloides/patología , Cultivo Primario de Células , Proteínas de Transporte Vesicular/metabolismo , Vía de Señalización Wnt , Saco Vitelino/citología , Saco Vitelino/crecimiento & desarrollo , Proteína Fluorescente Roja
18.
Nat Cell Biol ; 23(1): 61-74, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33420489

RESUMEN

Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.


Asunto(s)
Células Madre Embrionarias/citología , Hemangioblastos/citología , Mesodermo/citología , Proteínas de Dominio T Box/fisiología , Saco Vitelino/citología , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Hemangioblastos/metabolismo , Masculino , Mesodermo/metabolismo , Ratones Noqueados , Embarazo , RNA-Seq , Análisis de la Célula Individual , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Saco Vitelino/metabolismo
19.
Cell Rep ; 37(11): 110103, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34910918

RESUMEN

Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Endotelio Vascular/patología , Glucólisis , Hematopoyesis , Células Madre Hematopoyéticas/patología , Intercambiador de Sodio-Calcio/fisiología , Animales , Endotelio Vascular/metabolismo , Femenino , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación Oxidativa , Análisis de la Célula Individual , Transcriptoma
20.
Nat Commun ; 12(1): 821, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547282

RESUMEN

Down syndrome is associated with genome-wide perturbation of gene expression, which may be mediated by epigenetic changes. We perform an epigenome-wide association study on neonatal bloodspots comparing 196 newborns with Down syndrome and 439 newborns without Down syndrome, adjusting for cell-type heterogeneity, which identifies 652 epigenome-wide significant CpGs (P < 7.67 × 10-8) and 1,052 differentially methylated regions. Differential methylation at promoter/enhancer regions correlates with gene expression changes in Down syndrome versus non-Down syndrome fetal liver hematopoietic stem/progenitor cells (P < 0.0001). The top two differentially methylated regions overlap RUNX1 and FLI1, both important regulators of megakaryopoiesis and hematopoietic development, with significant hypermethylation at promoter regions of these two genes. Excluding Down syndrome newborns harboring preleukemic GATA1 mutations (N = 30), identified by targeted sequencing, has minimal impact on the epigenome-wide association study results. Down syndrome has profound, genome-wide effects on DNA methylation in hematopoietic cells in early life, which may contribute to the high frequency of hematological problems, including leukemia, in children with Down syndrome.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Síndrome de Down/genética , Epigénesis Genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Estudios de Casos y Controles , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Islas de CpG , Metilación de ADN , Síndrome de Down/metabolismo , Síndrome de Down/patología , Femenino , Feto , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Genoma Humano , Estudio de Asociación del Genoma Completo , Células Madre Hematopoyéticas/patología , Humanos , Recién Nacido , Hígado/metabolismo , Hígado/patología , Masculino , Regiones Promotoras Genéticas , Proteína Proto-Oncogénica c-fli-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA