RESUMEN
Mucosal application is the most common route of vaccination to prevent outbreaks of infectious diseases like Newcastle disease virus (NDV). To gain more knowledge about distribution and uptake of a vaccine after mucosal vaccination, we studied the distribution pattern of antigens after different mucosal routes of administration. Chickens were intranasally (i.n.), intratracheally (i.t.) or intraocularly (i.o.) inoculated with fluorescent beads and presence of beads in nasal-associated lymphoid tissue (NALT), Harderian gland (HG), conjunctiva-associated lymphoid tissue (CALT), trachea, lungs, air sacs, oesophagus and blood was characterized. The distribution patterns differed significantly between the three inoculation routes. After i.t. inoculation, the beads were mainly retrieved from trachea, NALT and lung. I.n. inoculation resulted in beads found mainly in NALT but detectable in all organs sampled. Finally, after i.o. inoculation, the beads were detected in NALT, CALT, HG and trachea. The highest number of beads was retrieved after i.n. inoculation. Development of novel vaccines requires a comprehensive knowledge of the mucosal immune system in birds in order to target vaccines appropriately and to provide efficient adjuvants. The NALT is likely important for the induction of mucosal immune responses. We therefore studied the phenotype of antigen-presenting cells isolated from NALT after i.n. inoculation with uncoated beads or with NDV-coated beads. Both types of beads were efficiently taken up and low numbers of bead+ cells were detected in all organs sampled. Inoculation with NDV-coated beads resulted in a preferential uptake by NALT antigen-presenting cells as indicated by high percentages of KUL01+-, MHC II+ and CD40+ bead+ cells.
Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Pollos/inmunología , Inmunidad Mucosa/fisiología , Tejido Linfoide/metabolismo , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/genética , Vacunas Virales/farmacocinética , Sacos Aéreos/metabolismo , Animales , Conjuntiva/metabolismo , Esófago/metabolismo , Citometría de Flujo , Fluorescencia , Glándula de Harder/metabolismo , Pulmón/metabolismo , Microesferas , Estadísticas no Paramétricas , Tráquea/metabolismoRESUMEN
Major distinctive features of avian lungs are the absence of draining lymph nodes and alveoli and alveolar macrophages (MPhs). However, a large network of MPhs and dendritic cells (DCs) is present in the mucosa of the larger airways and in the linings of the parabronchi. For the modulation of respiratory tract immune responses, for example, by vaccination, a better understanding of Ag uptake in the chicken respiratory tract is needed. In this study, we provide detailed characterization of APCs in chicken lungs, including their functional in vivo activities as measured by the uptake of fluorescently labeled 1-µm beads that are coated with either LPS or inactivated avian influenza A virus (IAV) mimicking the uptake of bacterial or viral Ag. We identified different subsets of MPhs and DCs in chicken lungs, based on the expression of CD11, activation markers, and DEC205. In vivo uptake of LPS- and IAV-beads resulted in an increased percentage MHC class II(+) (MHC II(+)) cells and in the upregulation of CD40. The uptake of LPS-beads resulted in the upregulation of CD80 and MHC II on the cell surface, suggesting either uptake of LPS- and IAV-beads by different subsets of phagocytic cells or LPS-mediated differential activation. Differences in phagosomal acidification indicated that in chicken lungs the MHC II(+) and CD80(+) bead(+) cell population includes DCs and that a large proportion of beads was taken up by MPhs. LPS-bead(+) cells were present in BALT, suggesting local induction of immune responses. Collectively, we characterized the uptake of Ags by phagocytes in the respiratory tract of chickens.
Asunto(s)
Antígenos Virales/inmunología , Células Dendríticas/inmunología , Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Macrófagos Alveolares/inmunología , Material Particulado/farmacología , Mucosa Respiratoria/inmunología , Animales , Antígenos de Diferenciación/inmunología , Antígenos Virales/farmacología , Pollos , Antígenos de Histocompatibilidad Clase II/inmunología , Lipopolisacáridos/farmacología , Pulmón/inmunologíaRESUMEN
Interferon epsilon (IFNε) is a unique type I interferon (IFN) that shows distinct constitutive expression in reproductive tract epithelium. Understanding how IFNε expression is regulated is critical for the mechanism of action in protecting the mucosa from infection. Combined computational and experimental investigation of the promoter of IFNε predicted transcription factor binding sites for the ETS family of transcription factors. We demonstrate here that Ifnε is regulated by Elf3, an epithelial restricted member of the ETS family. It is co-expressed with IFNε at the epithelium of uterus, lung and intestine, and we focused on regulation of IFNε expression in the uterus. Promoter reporter studies demonstrated that Elf3 was a strong driver of Ifnε expression; knockdown of Elf3 reduced expression levels of IFNε; Elf3 regulated Ifnε expression and chromatin immunoprecipitation (ChIP) confirmed the direct binding of Elf3 to the IFNε promoter. These data show that Elf3 is important in regulating protective mucosal immunity by driving constitutive expression of IFNε to protect mucosal tissues from infection in at least three organ systems.
Asunto(s)
Proteínas de Unión al ADN , Regiones Promotoras Genéticas , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Femenino , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones , Humanos , Regulación de la Expresión Génica , Útero/metabolismo , Útero/inmunología , Membrana Mucosa/metabolismo , Membrana Mucosa/inmunología , Sitios de Unión , Interferón Tipo I/metabolismo , Ratones Endogámicos C57BL , Epitelio/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Pulmón/metabolismo , Pulmón/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunologíaRESUMEN
BACKGROUND & AIMS: Type I interferon (T1IFN) signalling is crucial for maintaining intestinal homeostasis. We previously found that the novel T1IFN, IFNε, is highly expressed by epithelial cells of the female reproductive tract, where it protects against pathogens. Its function has not been studied in the intestine. We hypothesize that IFNε is important in maintaining intestinal homeostasis. METHODS: We characterized IFNε expression in mouse and human intestine by immunostaining and studied its function in the dextran sulfate sodium (DSS) colitis model using both genetic knockouts and neutralizing antibody. RESULTS: We demonstrate that IFNε is expressed in human and mouse intestinal epithelium, and expression is lost in inflammation. Furthermore, we show that IFNε limits intestinal inflammation in mouse models. Regulatory T cell (Treg) frequencies were paradoxically decreased in DSS-treated IFNε-/- mice, suggesting a role for IFNε in maintaining the intestinal Treg compartment. Colitis was ameliorated by transfer of wild-type Tregs into IFNε-/- mice. This demonstrates that IFNε supports intestinal Treg function. CONCLUSIONS: Overall, we have shown IFNε expression in intestinal epithelium and its critical role in gut homeostasis. Given its known role in the female reproductive tract, we now show IFNε has a protective role across multiple mucosal surfaces.
Asunto(s)
Colitis , Humanos , Ratones , Femenino , Animales , Colitis/metabolismo , Mucosa Intestinal/metabolismo , Inflamación/metabolismo , Transducción de Señal , Interferones/metabolismoRESUMEN
The uterus is a unique mucosal site where immune responses are balanced to be permissive of a fetus, yet protective against infections. Regulation of natural killer (NK) cell responses in the uterus during infection is critical, yet no studies have identified uterine-specific factors that control NK cell responses in this immune-privileged site. We show that the constitutive expression of IFNε in the uterus plays a crucial role in promoting the accumulation, activation, and IFNγ production of NK cells in uterine tissue during Chlamydia infection. Uterine epithelial IFNε primes NK cell responses indirectly by increasing IL-15 production by local immune cells and directly by promoting the accumulation of a pre-pro-like NK cell progenitor population and activation of NK cells in the uterus. These findings demonstrate the unique features of this uterine-specific type I IFN and the mechanisms that underpin its major role in orchestrating innate immune cell protection against uterine infection.
Asunto(s)
Células Asesinas Naturales , Útero , Femenino , Humanos , Feto , InterferonesRESUMEN
BACKGROUND: Since we were able to isolate viable virus from brain and lung of H7N1 low pathogenic avian influenza virus (LPAIV) infected chickens, we here examined the distribution of different LPAIV strains in chickens by measuring the viral AI RNA load in multiple organs. Subtypes of H5 (H5N1, H5N2), H7 (H7N1, H7N7) and H9 (H9N2), of chicken (H5N2, H7N1, H7N7, H9N2), or mallard (H5N1) origin were tested. The actual presence of viable virus was evaluated with virus isolation in organs of H7N7 inoculated chickens. FINDINGS: Viral RNA was found by PCR in lung, brain, intestine, peripheral blood mononuclear cells, heart, liver, kidney and spleen from chickens infected with chicken isolated LPAIV H5N2, H7N1, H7N7 or H9N2. H7N7 virus could be isolated from lung, ileum, heart, liver, kidney and spleen, but not from brain, which was in agreement with the data from the PCR. Infection with mallard isolated H5N1 LPAIV resulted in viral RNA detection in lung and peripheral blood mononuclear cells only. CONCLUSION: We speculate that chicken isolated LPAI viruses are spreading systemically in chicken, independently of the strain.
Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Animales , Encéfalo/virología , Pollos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/clasificación , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H7N1 del Virus de la Influenza A/clasificación , Subtipo H7N1 del Virus de la Influenza A/genética , Subtipo H7N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N1 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/clasificación , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Intestinos/virología , Pulmón/virologíaRESUMEN
Microglia activation is a prominent feature in many neuroinflammatory disorders. Unrestrained activation can generate a chronic inflammatory environment that might lead to neurodegeneration and autoimmunity. Extracellular adenosine modulates cellular activation through adenosine receptor (ADORA)-mediated signaling. There are four ADORA subtypes that can either increase (A(2A) and A(2B) receptors) or decrease (A(1) and A(3) receptors) intracellular cyclic AMP levels. The expression pattern of the subtypes thus orchestrates the cellular response to extracellular adenosine. We have investigated the expression of ADORA subtypes in unstimulated and TLR-activated primary rhesus monkey microglia. Activation induced an up-regulation of A(2A) and a down-regulation of A(3) receptor (A(3)R) levels. The altered ADORA-expression pattern sensitized microglia to A(2A) receptor (A(2A)R)-mediated inhibition of subsequent TLR-induced cytokine responses. By using combinations of subtype-specific agonists and antagonists, we revealed that in unstimulated microglia, A(2A)R-mediated inhibitory signaling was effectively counteracted by A(3)R-mediated signaling. In activated microglia, the decrease in A(3)R-mediated signaling sensitized them to A(2A)R-mediated inhibitory signaling. We report a differential, activation state-specific expression of ADORA in microglia and uncover a role for A(3)R as dynamically regulated suppressors of A(2A)R-mediated inhibition of TLR-induced responses. This would suggest exploration of combinations of A(2A)R agonists and A(3)R antagonists to dampen microglial activation during chronic neuroinflammatory conditions.
Asunto(s)
Microglía/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A3/metabolismo , Receptores Toll-Like/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Interleucina-12/biosíntesis , Interleucina-12/inmunología , Lipopolisacáridos/farmacología , Macaca mulatta , Microglía/efectos de los fármacos , Microglía/inmunología , FN-kappa B/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A3/genética , Transducción de Señal , Factores de Tiempo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
In this study, we investigated the development of T cell responses in mice after administration of a mannosylated ovalbumin peptide (M-OVA(323-339)). Immunization with M-OVA(323-339) in complete adjuvant resulted in enhanced antigen presentation in draining lymph nodes. Monitoring the fate of CFSE-labeled ovalbumin peptide-specific TCR transgenic CD4(+) T cells revealed that immunization with M-OVA(323-339) induced normal clonal expansion, recirculation and CD62L expression of antigen-specific T cells in vivo. However, these T cells developed only poor effector functions, reflected by minimal IFN-gamma production, low IgG2a levels in serum and poor peptide-specific delayed-type hypersensitivity (DTH) responses. This diminished inflammatory response was associated with decreased infiltration of T cell blasts and macrophages. Importantly, also mice with functional effector T cells did not mount a robust DTH response after a challenge with M-OVA(323-339) in the ear, although their T cells responded normally to M-OVA(323-339) in vitro. In conclusion, mannosylated peptide induces proliferation of T cells with impaired T(h)1 cell effector functions and additionally abrogates the activity of pre-existing effector T cells.
Asunto(s)
Presentación de Antígeno , Hipersensibilidad Tardía , Manosa , Ovalbúmina , Péptidos , Células TH1/inmunología , Secuencia de Aminoácidos , Animales , Femenino , Inmunización , Activación de Linfocitos , Manosa/administración & dosificación , Manosa/síntesis química , Manosa/química , Manosa/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Ovalbúmina/administración & dosificación , Ovalbúmina/síntesis química , Ovalbúmina/química , Ovalbúmina/inmunología , Péptidos/administración & dosificación , Péptidos/síntesis química , Péptidos/química , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/genéticaRESUMEN
Macrophages (MPh) and dendritic cells (DC) are members of the mononuclear phagocyte system. In chickens, markers to distinguish MPh from DC are lacking, but whether MPh and DC can be distinguished in humans and mice is under debate, despite the availability of numerous markers. Mucosal MPh and DC are strategically located to ingest foreign antigens, suggesting they can rapidly respond to invading pathogens. This review addresses our current understanding of DC and MPh function, the receptors expressed by MPh and DC involved in pathogen recognition, and the responses of DC and MPh against respiratory and intestinal pathogens in the chicken. Furthermore, potential opportunities are described to modulate MPh and DC responses to enhance disease resistance, highlighting modulation through nutraceuticals and vaccination.
Asunto(s)
Pollos/inmunología , Células Dendríticas/inmunología , Tracto Gastrointestinal/inmunología , Macrófagos/inmunología , Sistema Respiratorio/inmunología , Animales , Coccidiosis/inmunología , Coccidiosis/prevención & control , Células Dendríticas/microbiología , Células Dendríticas/parasitología , Células Dendríticas/virología , Suplementos Dietéticos/estadística & datos numéricos , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/parasitología , Tracto Gastrointestinal/virología , Inmunidad Innata , Inmunomodulación , Gripe Aviar/inmunología , Gripe Aviar/prevención & control , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/inmunología , Macrófagos/microbiología , Macrófagos/parasitología , Macrófagos/virología , Sistema Respiratorio/microbiología , Sistema Respiratorio/parasitología , Sistema Respiratorio/virología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/inmunología , Vacunación/estadística & datos numéricosRESUMEN
To increase our understanding of the interaction between avian influenza virus and its chicken host, we identified receptors for putative avian influenza virus (AIV) glycan determinants on chicken dendritic cells. Chicken dendritic cells (DCs) were found to recognize glycan determinants containing terminal αGalNAc, Galα1-3Gal, GlcNAcß1-4GlcNAcß1-4GlcNAcß (chitotriose) and Galα1-2Gal. Infection of chicken dendritic cells with either low pathogenic (LP) or highly pathogenic (HP) AIV results in elevated mRNA expression of homologs of the mouse C-type lectins DEC205 and macrophage mannose receptor (MMR), whereas expression levels of the human dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) homolog remained unchanged. Following uptake and subsequent presentation of avian influenza virus by DCs, adaptive immunity, including humoral immune responses are induced. We have investigated the antibody responses against virus glycan epitopes after avian influenza virus infection. Using glycan micro-array analysis we showed that chicken contained antibodies that predominantly recognize terminal Galα1-3Gal-R, chitotriose and Fucα1-2Galß1-4GlcNAc-R (H-type 2). After influenza-infection, glycan array analysis showed that both levels and repertoire of glycan-recognizing antibodies decreased. However, analysis of the sera by ELISA indicated that the levels of different isotypes of anti-glycan Abs against specific glycan antigens was increased after influenza-infection, suggesting that the presentation of the glycan antigens and iso-type of the Abs are critical parameters to take into account when measuring anti-glycan Abs. This novel approach in avian influenza research may contribute to the development of a broad spectrum vaccine and improves our mechanistic understanding of innate and adaptive responses to glycans.
Asunto(s)
Células Dendríticas/inmunología , Inmunidad Humoral/inmunología , Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Polisacáridos/inmunología , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Embrión de Pollo , Pollos , Células Dendríticas/metabolismo , Células Dendríticas/virología , Disacáridos/inmunología , Disacáridos/metabolismo , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Epítopos/metabolismo , Citometría de Flujo , Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Virus de la Influenza A/metabolismo , Virus de la Influenza A/fisiología , Gripe Aviar/virología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/inmunología , Lectinas de Unión a Manosa/metabolismo , Datos de Secuencia Molecular , Polisacáridos/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Trisacáridos/inmunología , Trisacáridos/metabolismoRESUMEN
Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36-48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next activation of lung NK cells upon HPAI virus infection was analysed. Infection with a H9N2 LPAI virus resulted in the presence of viral RNA in the lungs which coincided with enhanced activation of lung NK cells. The presence of H5N1 viruses, measured by detection of viral RNA, did not induce activation of lung NK cells. This suggests that decreased NK-cell activation may be one of the mechanisms associated with the enhanced pathogenicity of H5N1 viruses.
Asunto(s)
Pollos/inmunología , Pollos/virología , Gripe Aviar/inmunología , Gripe Aviar/virología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/virología , Orthomyxoviridae/patogenicidad , Animales , Gripe Aviar/patologíaRESUMEN
The role and kinetics of respiratory immunoglobulins in AIV infection has not been investigated. In this study we determined the numbers of both total antibody secreting cells (ASC) and virus-specific ASC in lung, spleen, blood and bone marrow (BM) following low-pathogenic AIV infection. Antiviral humoral immune responses were induced both locally in the lung and systemically in the spleen. Responses in the lung and BM preceded responses in the spleen and in blood, with virus-specific IgY ASC already detected in lung and BM from 1 week post-primary inoculation, indicating that respiratory immune responses are not induced in the spleen, but locally in the lung. ASC present in the blood of the lungs and co-isolated during lymphocyte isolation from the lungs have no major impact on the ASC detected in the lungs based on statistical correlation.
Asunto(s)
Células Productoras de Anticuerpos/inmunología , Pollos/inmunología , Inmunidad Humoral/inmunología , Inmunoglobulinas/inmunología , Subtipo H7N1 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Animales , Células Productoras de Anticuerpos/virología , Pollos/virología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Inmunoglobulinas/biosíntesis , Inmunoglobulinas/sangre , Gripe Aviar/sangre , Cinética , Pulmón/citología , Pulmón/inmunología , Pulmón/virología , Organismos Libres de Patógenos Específicos , Bazo/citología , Bazo/inmunología , Bazo/virología , Estadísticas no ParamétricasRESUMEN
The risk and the size of an outbreak of avian influenza virus (AIV) could be restricted by vaccination of poultry. A vaccine used for rapid intervention during an AIV outbreak should be safe, highly effective after a single administration and suitable for mass application. In the case of AIV, aerosol vaccination using live virus is not desirable because of its zoonotic potential and because of the risk for virus reassortment. The rational design of novel mucosal-inactivated vaccines against AIV requires a comprehensive knowledge of the structure and function of the lung-associated immune system in birds in order to target vaccines appropriately and to design efficient mucosal adjuvants. This review addresses our current understanding of the induction of respiratory immune responses in the chicken. Furthermore, possible mucosal vaccination strategies for AIV are highlighted.
Asunto(s)
Pollos , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Vacunas de Productos Inactivados/inmunología , Administración a través de la Mucosa , Animales , Vacunas contra la Influenza/administración & dosificación , Gripe Aviar/inmunología , Enfermedades de las Aves de Corral/inmunología , Vacunación/veterinaria , Vacunas de Productos Inactivados/administración & dosificaciónRESUMEN
In the poultry industry, infections with avian influenza virus (AIV) can result in significant economic losses. The risk and the size of an outbreak might be restricted by vaccination of poultry. A vaccine that would be used for rapid intervention during an outbreak should be safe to use, highly effective after a single administration and be suitable for mass application. A vaccine that could be applied by spray or aerosol would be suitable for mass application, but respiratory applied inactivated influenza is poorly immunogenic and needs to be adjuvanted. We chose aluminum OH, chitosan, cholera toxin B subunit (CT-B), and Stimune as adjuvant for an aerosolized vaccine with inactivated H9N2. Each adjuvant was tested in two doses. None of the adjuvanted vaccines induced AIV-specific antibodies after single vaccination, measured 1 and 3 weeks after vaccination by aerosol, in contrast to the intramuscularly applied vaccine. The aerosolized vaccine did enter the chickens' respiratory tract as CT-B-specific serum antibodies were detected after 1 week in chickens vaccinated with the CT-B-adjuvanted vaccine. Chickens showed no adverse effects after the aerosol vaccination based on weight gain and clinical signs. The failure to detect AIV-specific antibodies might be due to the concentration of the inactivated virus.