Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 107(4): 763-777, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937143

RESUMEN

Distal hereditary motor neuropathies (HMNs) and axonal Charcot-Marie-Tooth neuropathy (CMT2) are clinically and genetically heterogeneous diseases characterized primarily by motor neuron degeneration and distal weakness. The genetic cause for about half of the individuals affected by HMN/CMT2 remains unknown. Here, we report the identification of pathogenic variants in GBF1 (Golgi brefeldin A-resistant guanine nucleotide exchange factor 1) in four unrelated families with individuals affected by sporadic or dominant HMN/CMT2. Genomic sequencing analyses in seven affected individuals uncovered four distinct heterozygous GBF1 variants, two of which occurred de novo. Other known HMN/CMT2-implicated genes were excluded. Affected individuals show HMN/CMT2 with slowly progressive distal muscle weakness and musculoskeletal deformities. Electrophysiological studies confirmed axonal damage with chronic neurogenic changes. Three individuals had additional distal sensory loss. GBF1 encodes a guanine-nucleotide exchange factor that facilitates the activation of members of the ARF (ADP-ribosylation factor) family of small GTPases. GBF1 is mainly involved in the formation of coatomer protein complex (COPI) vesicles, maintenance and function of the Golgi apparatus, and mitochondria migration and positioning. We demonstrate that GBF1 is present in mouse spinal cord and muscle tissues and is particularly abundant in neuropathologically relevant sites, such as the motor neuron and the growth cone. Consistent with the described role of GBF1 in Golgi function and maintenance, we observed marked increase in Golgi fragmentation in primary fibroblasts derived from all affected individuals in this study. Our results not only reinforce the existing link between Golgi fragmentation and neurodegeneration but also demonstrate that pathogenic variants in GBF1 are associated with HMN/CMT2.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Factores de Intercambio de Guanina Nucleótido/genética , Debilidad Muscular/genética , Atrofia Muscular Espinal/genética , Anomalías Musculoesqueléticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Axones/patología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/patología , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Heterocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Debilidad Muscular/diagnóstico , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Anomalías Musculoesqueléticas/diagnóstico , Anomalías Musculoesqueléticas/metabolismo , Anomalías Musculoesqueléticas/patología , Mutación , Linaje , Cultivo Primario de Células , Médula Espinal/anomalías , Médula Espinal/metabolismo
2.
Brain ; 145(5): 1684-1697, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34788397

RESUMEN

FZR1, which encodes the Cdh1 subunit of the anaphase-promoting complex, plays an important role in neurodevelopment by regulating the cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental and epileptic encephalopathies and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Whole-exome sequencing in 39 patient-parent trios and subsequent targeted sequencing in an additional cohort of 211 patients was performed to identify novel genes involved in developmental and epileptic encephalopathy. Functional studies in Drosophila were performed using three different mutant alleles of the Drosophila homologue of FZR1 fzr. All three individuals carrying de novo variants in FZR1 had childhood-onset generalized epilepsy, intellectual disability, mild ataxia and normal head circumference. Two individuals were diagnosed with the developmental and epileptic encephalopathy subtype myoclonic atonic epilepsy. We provide genetic-association testing using two independent statistical tests to support FZR1 association with developmental and epileptic encephalopathies. Further, we provide functional evidence that the missense variants are loss-of-function alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homologue fzr and overexpression studies, we show that patient variants can affect proper neurodevelopment. With the recent report of a patient with neonatal-onset with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and developmental and epileptic encephalopathy and expands the associated phenotype. We conclude that heterozygous loss-of-function of FZR1 leads to developmental and epileptic encephalopathies associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed myoclonic atonic epilepsy or developmental and epileptic encephalopathy cases.


Asunto(s)
Proteínas Cdh1 , Epilepsia Generalizada , Epilepsia , Microcefalia , Ataxia , Proteínas Cdh1/genética , Niño , Epilepsia/genética , Epilepsia Generalizada/genética , Humanos , Mutación con Pérdida de Función , Microcefalia/genética , Fenotipo
3.
Mov Disord ; 37(6): 1175-1186, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35150594

RESUMEN

BACKGROUND: Pathogenic variants in SPTAN1 have been linked to a remarkably broad phenotypical spectrum. Clinical presentations include epileptic syndromes, intellectual disability, and hereditary motor neuropathy. OBJECTIVES: We investigated the role of SPTAN1 variants in rare neurological disorders such as ataxia and spastic paraplegia. METHODS: We screened 10,000 NGS datasets across two international consortia and one local database, indicative of the level of international collaboration currently required to identify genes causative for rare disease. We performed in silico modeling of the identified SPTAN1 variants. RESULTS: We describe 22 patients from 14 families with five novel SPTAN1 variants. Of six patients with cerebellar ataxia, four carry a de novo SPTAN1 variant and two show a sporadic inheritance. In this group, one variant (p.Lys2083del) is recurrent in four patients. Two patients have novel de novo missense mutations (p.Arg1098Cys, p.Arg1624Cys) associated with cerebellar ataxia, in one patient accompanied by intellectual disability and epilepsy. We furthermore report a recurrent missense mutation (p.Arg19Trp) in 15 patients with spastic paraplegia from seven families with a dominant inheritance pattern in four and a de novo origin in one case. One further patient carrying a de novo missense mutation (p.Gln2205Pro) has a complex spastic ataxic phenotype. Through protein modeling we show that mutated amino acids are located at crucial interlinking positions, interconnecting the three-helix bundle of a spectrin repeat. CONCLUSIONS: We show that SPTAN1 is a relevant candidate gene for ataxia and spastic paraplegia. We suggest that for the mutations identified in this study, disruption of the interlinking of spectrin helices could be a key feature of the pathomechanism. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Proteínas Portadoras , Ataxia Cerebelosa , Discapacidad Intelectual , Proteínas de Microfilamentos , Paraplejía Espástica Hereditaria , Proteínas Portadoras/genética , Ataxia Cerebelosa/genética , Humanos , Discapacidad Intelectual/genética , Proteínas de Microfilamentos/genética , Mutación/genética , Paraplejía/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética , Espectrina/genética
4.
Eur J Neurol ; 29(7): 2156-2161, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253317

RESUMEN

BACKGROUND AND PURPOSE: Ataxia and cough are rare features in hereditary sensory and autonomic neuropathies (HSAN), a group of diseases of mostly unknown genetic cause. Biallelic repeat expansions in RFC1 are associated with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study aimed to investigate the prevalence of RFC1 repeat expansions in a cohort of HSAN patients. METHODS: After unremarkable whole-exome sequencing (WES) analysis, we performed repeat-primed PCR to detect intronic RFC1 expansions in 12 HSAN families, who all presented with chronic cough. RESULTS: In these patients, 75% carried biallelic expansions of the pathogenic AAGGG motif. Compared with RFC1-/- cases, RFC1+/+ cases presented more consistently with positive sensory and autonomic symptoms. Afferent ataxia was more severe in the RFC1+/+ cohort and cerebellar ataxia was a common feature (21%). CONCLUSIONS: We demonstrate that RFC1 is a frequent cause of (WES-negative) HSAN with chronic cough and ataxia. The diagnostic yield of RFC1 repeat-primed PCR was surprisingly high, given that HSAN is genetically poorly understood. This combination of HSAN, ataxia, and chronic cough symptoms represents a new nosological entity within the neuropathy-ataxia spectrum.


Asunto(s)
Vestibulopatía Bilateral , Ataxia Cerebelosa , Neuropatías Hereditarias Sensoriales y Autónomas , Enfermedades del Sistema Nervioso Periférico , Enfermedades Vestibulares , Ataxia , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Tos/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Humanos , Enfermedades del Sistema Nervioso Periférico/complicaciones
5.
Brain ; 144(5): 1422-1434, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33970200

RESUMEN

Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.


Asunto(s)
Oxigenasas/genética , Paraplejía Espástica Hereditaria/genética , Animales , Femenino , Humanos , Masculino , Ratones , Mutación , Linaje , Ratas , Pez Cebra
6.
Neurobiol Dis ; 156: 105421, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34118419

RESUMEN

Neurodegenerative disorders like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are pathologically characterized by toxic protein deposition in the cytoplasm or nucleus of affected neurons and glial cells. Many of these aggregated proteins belong to the class of RNA binding proteins (RBP), and, when mutated, account for a significant subset of familial ALS and FTD cases. Here, we present first genetic evidence for the RBP gene RBM45 in the FTD-ALS spectrum. RBM45 shows many parallels with other FTD-ALS associated genes and proteins. Multiple lines of evidence have demonstrated that RBM45 is an RBP that, upon mutation, redistributes to the cytoplasm where it co-aggregates with other RBPs into cytoplasmic stress granules (SG), evolving to persistent toxic TDP-43 immunoreactive inclusions. Exome sequencing in two affected first cousins of a heavily affected early-onset dementia family listed a number of candidate genes. The gene with the highest pathogenicity score was the RBP gene RBM45. In the family, the RBM45 Arg183* nonsense mutation co-segregated in both affected cousins. Validation in an unrelated patient (n = 548) / control (n = 734) cohort identified an additional RBM45 Arg183* carrier with bvFTD on a shared 4 Mb haplotype. Transcript and protein expression analysis demonstrated loss of nuclear RBM45, suggestive of a loss-of-function disease mechanism. Further, two more ultra-rare VUS, one in the nuclear localization signal (NLS, p.Lys456Arg) in an ALS patient and one in the intrinsically disordered homo-oligomer assembly (HOA) domain (p.Arg314Gln) in a patient with nfvPPA were detected. Our findings suggest that the pathomechanisms linking RBM45 with FTD and ALS may be related to its loss of nuclear function as a mediator of mRNA splicing, cytoplasmic retention or its inability to form homo-oligomers, leading to aggregate formation with trapping of other RBPs including TDP-43, which may accumulate into persisted TDP-43 inclusions.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Secuenciación del Exoma/métodos , Demencia Frontotemporal/genética , Estudios de Asociación Genética/métodos , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/epidemiología , Bélgica/epidemiología , Estudios de Cohortes , Femenino , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Linaje
7.
Am J Hum Genet ; 103(6): 1022-1029, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30526861

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies characterized by refractory seizures and developmental impairment. Sequencing approaches have identified causal genetic variants in only about 50% of individuals with DEEs.1-3 This suggests that unknown genetic etiologies exist, potentially in the ∼98% of human genomes not covered by exome sequencing (ES). Here we describe seven likely pathogenic variants in regions outside of the annotated coding exons of the most frequently implicated epilepsy gene, SCN1A, encoding the alpha-1 sodium channel subunit. We provide evidence that five of these variants promote inclusion of a "poison" exon that leads to reduced amounts of full-length SCN1A protein. This mechanism is likely to be broadly relevant to human disease; transcriptome studies have revealed hundreds of poison exons,4,5 including some present within genes encoding other sodium channels and in genes involved in neurodevelopment more broadly.6 Future research on the mechanisms that govern neuronal-specific splicing behavior might allow researchers to co-opt this system for RNA therapeutics.


Asunto(s)
Epilepsias Mioclónicas/genética , Epilepsia/genética , Exones/genética , Variación Genética/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Canales de Sodio/genética , Transcriptoma/genética
8.
Ann Neurol ; 88(2): 251-263, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32337771

RESUMEN

OBJECTIVE: To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS: Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS: Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION: This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.


Asunto(s)
Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/genética , Variación Genética/genética , Imagen por Resonancia Magnética/métodos , Ubiquinona/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Estructura Secundaria de Proteína , Ubiquinona/química , Adulto Joven
9.
Brain ; 142(9): 2605-2616, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31332438

RESUMEN

Distal hereditary motor neuropathies are a rare subgroup of inherited peripheral neuropathies hallmarked by a length-dependent axonal degeneration of lower motor neurons without significant involvement of sensory neurons. We identified patients with heterozygous nonsense mutations in the αII-spectrin gene, SPTAN1, in three separate dominant hereditary motor neuropathy families via next-generation sequencing. Variable penetrance was noted for these mutations in two of three families, and phenotype severity differs greatly between patients. The mutant mRNA containing nonsense mutations is broken down by nonsense-mediated decay and leads to reduced protein levels in patient cells. Previously, dominant-negative αII-spectrin gene mutations were described as causal in a spectrum of epilepsy phenotypes.


Asunto(s)
Proteínas Portadoras/genética , Codón sin Sentido/genética , Proteínas de Microfilamentos/genética , Mutación/genética , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
10.
Brain ; 142(6): 1561-1572, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31135052

RESUMEN

The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the 'WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso/genética , Fenotipo , Paraplejía Espástica Hereditaria/genética , Niño , Estudios de Cohortes , Enfermedades Desmielinizantes/genética , Femenino , Humanos , Masculino , Oxigenasas de Función Mixta/genética , Mutación/genética , Linaje , Estudios Retrospectivos , Paraplejía Espástica Hereditaria/clasificación
11.
Epilepsia ; 60(4): 689-706, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30866059

RESUMEN

OBJECTIVE: Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. METHODS: We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had "epilepsy plus," defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. RESULTS: Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 × 10-9 ). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. SIGNIFICANCE: The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.


Asunto(s)
Epilepsia/genética , Comorbilidad , Variaciones en el Número de Copia de ADN , Epilepsia/complicaciones , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Fenotipo
12.
Brain ; 141(9): 2592-2604, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30084953

RESUMEN

Autosomal recessive cerebellar ataxias are a group of rare disorders that share progressive degeneration of the cerebellum and associated tracts as the main hallmark. Here, we report two unrelated patients with a new subtype of autosomal recessive cerebellar ataxia caused by biallelic, gene-disruptive mutations in GDAP2, a gene previously not implicated in disease. Both patients had onset of ataxia in the fourth decade. Other features included progressive spasticity and dementia. Neuropathological examination showed degenerative changes in the cerebellum, olive inferior, thalamus, substantia nigra, and pyramidal tracts, as well as tau pathology in the hippocampus and amygdala. To provide further evidence for a causative role of GDAP2 mutations in autosomal recessive cerebellar ataxia pathophysiology, its orthologous gene was investigated in the fruit fly Drosophila melanogaster. Ubiquitous knockdown of Drosophila Gdap2 resulted in shortened lifespan and motor behaviour anomalies such as righting defects, reduced and uncoordinated walking behaviour, and compromised flight. Gdap2 expression levels responded to stress treatments in control flies, and Gdap2 knockdown flies showed increased sensitivity to deleterious effects of stressors such as reactive oxygen species and nutrient deprivation. Thus, Gdap2 knockdown in Drosophila and GDAP2 loss-of-function mutations in humans lead to locomotor phenotypes, which may be mediated by altered responses to cellular stress.


Asunto(s)
Ataxia Cerebelosa/genética , Ataxia Cerebelosa/fisiopatología , Proteínas del Tejido Nervioso/genética , Adulto , Animales , Ataxia/genética , Ataxia/fisiopatología , Ataxia Cerebelosa/metabolismo , Cerebelo/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Técnicas de Silenciamiento del Gen/métodos , Genes Recesivos , Predisposición Genética a la Enfermedad/genética , Humanos , Persona de Mediana Edad , Mutación , Proteínas del Tejido Nervioso/fisiología , Fenotipo , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
13.
Hum Mutat ; 39(3): 415-432, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29235198

RESUMEN

Histidyl-tRNA synthetase (HARS) ligates histidine to cognate tRNA molecules, which is required for protein translation. Mutations in HARS cause the dominant axonal peripheral neuropathy Charcot-Marie-Tooth disease type 2W (CMT2W); however, the precise molecular mechanism remains undefined. Here, we investigated three HARS missense mutations associated with CMT2W (p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly). The three mutations localize to the HARS catalytic domain and failed to complement deletion of the yeast ortholog (HTS1). Enzyme kinetics, differential scanning fluorimetry (DSF), and analytical ultracentrifugation (AUC) were employed to assess the effect of these substitutions on primary aminoacylation function and overall dimeric structure. Notably, the p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly HARS substitutions all led to reduced aminoacylation, providing a direct connection between CMT2W-linked HARS mutations and loss of canonical ARS function. While DSF assays revealed that only one of the variants (p.Val155Gly) was less thermally stable relative to wild-type, all three HARS mutants formed stable dimers, as measured by AUC. Our work represents the first biochemical analysis of CMT-associated HARS mutations and underscores how loss of the primary aminoacylation function can contribute to disease pathology.


Asunto(s)
Axones/patología , Histidina-ARNt Ligasa/metabolismo , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/patología , Secuencia de Aminoácidos , Aminoacilación , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Femenino , Prueba de Complementación Genética , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/aislamiento & purificación , Humanos , Cinética , Masculino , Mutación/genética , Linaje , Enfermedades del Sistema Nervioso Periférico/genética , Multimerización de Proteína , Especificidad por Sustrato
14.
J Neurol Neurosurg Psychiatry ; 89(8): 870-878, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29449460

RESUMEN

BACKGROUND: Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. METHODS: A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. RESULTS: Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. CONCLUSIONS: We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genotipo , Guanidinoacetato N-Metiltransferasa/genética , Mutación , Profilinas/genética , Adulto , Anciano , Axones/patología , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Proteómica , Adulto Joven
15.
J Neurol Neurosurg Psychiatry ; 89(5): 506-512, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29175898

RESUMEN

BACKGROUND: Mutations in the gene coding for protein O-mannosyl-transferase 2 (POMT2) are known to cause severe congenital muscular dystrophy, and recently, mutations in POMT2 have also been linked to a milder limb-girdle muscular dystrophy (LGMD) phenotype, named LGMD type 2N (LGMD2N). Only four cases have been reported so far.ClinicalTrials.gov ID: NCT02759302 METHODS: We report 12 new cases of LGMD2N, aged 18-63 years. Muscle involvement was assessed by MRI, muscle strength testing and muscle biopsy analysis. Other clinical features were also recorded. RESULTS: Presenting symptoms were difficulties in walking, pain during exercise, delayed motor milestones and learning disabilities at school. All had some degree of cognitive impairment. Brain MRIs were abnormal in 3 of 10 patients, showing ventricular enlargement in one, periventricular hyperintensities in another and frontal atrophy of the left hemisphere in a third patient. Most affected muscle groups were hip and knee flexors and extensors on strength testing. On MRI, most affected muscles were hamstrings followed by paraspinal and gluteal muscles. The 12 patients in our cohort carried 11 alleles with known mutations, whereas 11 novel mutations accounted for the remaining 13 alleles. CONCLUSION: We describe the first cohort of patients with LGMD2N and show that unlike other LGMD types, all patients had cognitive impairment. Primary muscle involvement was found in hamstring, paraspinal and gluteal muscles on MRI, which correlated well with reduced muscle strength in hip and knee flexors and extensors. The study expands the mutational spectrum for LGMD2N, with the description of 11 novel POMT2 mutations in the association with LGMD2N. CLINICAL TRIAL REGISTRATION: NCT02759302.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Manosiltransferasas/genética , Distrofia Muscular de Cinturas/genética , Adolescente , Adulto , Alelos , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Debilidad Muscular/complicaciones , Debilidad Muscular/fisiopatología , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/complicaciones , Distrofia Muscular de Cinturas/patología , Distrofia Muscular de Cinturas/fisiopatología , Mutación , Neuroimagen , Adulto Joven
16.
Brain ; 140(12): 3112-3127, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126212

RESUMEN

Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7α-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. In this multicentre study, we have performed detailed clinical and biochemical analysis in 34 genetically confirmed SPG5 cases from 28 families, studied dose-dependent neurotoxicity of oxysterols in human cortical neurons and performed a randomized placebo-controlled double blind interventional trial targeting oxysterol accumulation in serum of SPG5 patients. Clinically, SPG5 manifested in childhood or adolescence (median 13 years). Gait ataxia was a common feature. SPG5 patients lost the ability to walk independently after a median disease duration of 23 years and became wheelchair dependent after a median 33 years. The overall cross-sectional progression rate of 0.56 points on the Spastic Paraplegia Rating Scale per year was slightly lower than the longitudinal progression rate of 0.80 points per year. Biochemically, marked accumulation of CYP7B1 substrates including 27-hydroxycholesterol was confirmed in serum (n = 19) and cerebrospinal fluid (n = 17) of SPG5 patients. Moreover, 27-hydroxycholesterol levels in serum correlated with disease severity and disease duration. Oxysterols were found to impair metabolic activity and viability of human cortical neurons at concentrations found in SPG5 patients, indicating that elevated levels of oxysterols might be key pathogenic factors in SPG5. We thus performed a randomized placebo-controlled trial (EudraCT 2015-000978-35) with atorvastatin 40 mg/day for 9 weeks in 14 SPG5 patients with 27-hydroxycholesterol levels in serum as the primary outcome measure. Atorvastatin, but not placebo, reduced serum 27-hydroxycholesterol from 853 ng/ml [interquartile range (IQR) 683-1113] to 641 (IQR 507-694) (-31.5%, P = 0.001, Mann-Whitney U-test). Similarly, 25-hydroxycholesterol levels in serum were reduced. In cerebrospinal fluid 27-hydroxycholesterol was reduced by 8.4% but this did not significantly differ from placebo. As expected, no effects were seen on clinical outcome parameters in this short-term trial. In this study, we define the mutational and phenotypic spectrum of SPG5, examine the correlation of disease severity and progression with oxysterol concentrations, and demonstrate in a randomized controlled trial that atorvastatin treatment can effectively lower 27-hydroxycholesterol levels in serum of SPG5 patients. We thus demonstrate the first causal treatment strategy in hereditary spastic paraplegia.


Asunto(s)
Atorvastatina/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Adolescente , Adulto , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Estudios de Casos y Controles , Proliferación Celular , Estudios Transversales , Familia 7 del Citocromo P450/genética , Progresión de la Enfermedad , Método Doble Ciego , Familia , Femenino , Humanos , Hidroxicolesteroles/metabolismo , Células Madre Pluripotentes Inducidas , Masculino , Persona de Mediana Edad , Mutación , Neuritas , Oxiesteroles/sangre , Oxiesteroles/líquido cefalorraquídeo , Linaje , Índice de Severidad de la Enfermedad , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Esteroide Hidroxilasas/genética , Adulto Joven
17.
Brain ; 140(5): 1252-1266, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369220

RESUMEN

Distal hereditary motor neuropathy is a heterogeneous group of inherited neuropathies characterized by distal limb muscle weakness and atrophy. Although at least 15 genes have been implicated in distal hereditary motor neuropathy, the genetic causes remain elusive in many families. To identify an additional causal gene for distal hereditary motor neuropathy, we performed exome sequencing for two affected individuals and two unaffected members in a Taiwanese family with an autosomal dominant distal hereditary motor neuropathy in which mutations in common distal hereditary motor neuropathy-implicated genes had been excluded. The exome sequencing revealed a heterozygous mutation, c.770A > G (p.His257Arg), in the cytoplasmic tryptophanyl-tRNA synthetase (TrpRS) gene (WARS) that co-segregates with the neuropathy in the family. Further analyses of WARS in an additional 79 Taiwanese pedigrees with inherited neuropathies and 163 index cases from Australian, European, and Korean distal hereditary motor neuropathy families identified the same mutation in another Taiwanese distal hereditary motor neuropathy pedigree with different ancestries and one additional Belgian distal hereditary motor neuropathy family of Caucasian origin. Cell transfection studies demonstrated a dominant-negative effect of the p.His257Arg mutation on aminoacylation activity of TrpRS, which subsequently compromised protein synthesis and reduced cell viability. His257Arg TrpRS also inhibited neurite outgrowth and led to neurite degeneration in the neuronal cell lines and rat motor neurons. Further in vitro analyses showed that the WARS mutation could potentiate the angiostatic activities of TrpRS by enhancing its interaction with vascular endothelial-cadherin. Taken together, these findings establish WARS as a gene whose mutations may cause distal hereditary motor neuropathy and alter canonical and non-canonical functions of TrpRS.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Triptófano-ARNt Ligasa/genética , Animales , Supervivencia Celular , Células Cultivadas , Exoma/genética , Femenino , Humanos , Masculino , Ratones , Mutación , Neuritas/patología , Neuritas/fisiología , Linaje , Biosíntesis de Proteínas/genética , Proteínas , Análisis de Secuencia de ADN , Triptófano-ARNt Ligasa/metabolismo
18.
Brain ; 140(6): 1561-1578, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28459997

RESUMEN

Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.


Asunto(s)
Discapacidad Intelectual/genética , Espasticidad Muscular/genética , Atrofia Óptica/genética , ARN Polimerasa III/genética , Paraplejía Espástica Hereditaria/genética , Ataxias Espinocerebelosas/genética , Anciano , Técnicas de Cultivo de Célula , Exones/genética , Femenino , Estudios de Asociación Genética , Humanos , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/fisiopatología , Intrones/genética , Masculino , Persona de Mediana Edad , Espasticidad Muscular/diagnóstico por imagen , Espasticidad Muscular/fisiopatología , Mutación , Atrofia Óptica/diagnóstico por imagen , Atrofia Óptica/fisiopatología , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/fisiopatología , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/fisiopatología
19.
PLoS Genet ; 11(5): e1005226, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25950944

RESUMEN

Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.


Asunto(s)
Epilepsia Generalizada/genética , Trastornos del Neurodesarrollo/genética , Eliminación de Secuencia , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Femenino , Reordenamiento Génico , Estudios de Asociación Genética , Genoma Humano , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Dominios y Motivos de Interacción de Proteínas , Adulto Joven
20.
Hum Mutat ; 38(3): 297-309, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28008748

RESUMEN

We investigated the mutation spectrum of the TANK-Binding Kinase 1 (TBK1) gene and its associated phenotypic spectrum by exonic resequencing of TBK1 in a cohort of 2,538 patients with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), or FTD plus ALS, ascertained within the European Early-Onset Dementia Consortium. We assessed pathogenicity of predicted protein-truncating mutations by measuring loss of RNA expression. Functional effect of in-frame amino acid deletions and missense mutations was further explored in vivo on protein level and in vitro by an NFκB-induced luciferase reporter assay and measuring phosphorylated TBK1. The protein-truncating mutations led to the loss of transcript through nonsense-mediated mRNA decay. For the in-frame amino acid deletions, we demonstrated loss of TBK1 or phosphorylated TBK1 protein. An important fraction of the missense mutations compromised NFκB activation indicating that at least some functions of TBK1 are lost. Although missense mutations were also present in controls, over three times more mutations affecting TBK1 functioning were found in the mutation fraction observed in patients only, suggesting high-risk alleles (P = 0.03). Total mutation frequency for confirmed TBK1 LoF mutations in the European cohort was 0.7%, with frequencies in the clinical subgroups of 0.4% in FTD, 1.3% in ALS, and 3.6% in FTD-ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Proteínas Serina-Treonina Quinasas/genética , Población Blanca/genética , Anciano , Alelos , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/epidemiología , Estudios de Casos y Controles , Estudios de Cohortes , Activación Enzimática , Femenino , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/epidemiología , Estudios de Asociación Genética , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación , FN-kappa B/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA