Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mov Disord ; 37(10): 2122-2128, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35877029

RESUMEN

BACKGROUND: RFC1-related disorder is a novel heredodegenerative condition with a broad phenotypic spectrum. Its neuropathological bases are not yet fully understood, particularly regarding the pattern, extent, and clinical relevance of spinal cord (SC) damage. OBJECTIVES: The objectives were to determine the SC structural signature in RFC1-related disorder in vivo and to identify potential clinical correlates for these imaging abnormalities. METHODS: We enrolled 17 subjects with biallelic RFC1 (AAGGG)n expansions and 11 age- and sex-matched healthy controls that underwent multimodal magnetic resonance imaging SC acquisitions in a 3T Philips Achieva scanner. Both global morphometry and tract-specific analyses were then performed across all cervical levels. Between-group comparisons were assessed using nonparametric tests. RESULTS: In the patient group, mean age and disease duration were 62.9 ± 9.3 and 9.3 ± 4.0, respectively. Compared to controls, patients had remarkable SC cross-sectional area reduction along all cervical levels but anteroposterior flattening only in the lower cervical levels. There was also prominent SC gray matter atrophy. Diffusivity abnormalities were identified in the dorsal columns but not in the lateral corticospinal tracts. Disease severity did not correlate with these imaging parameters. CONCLUSION: SC damage is a hallmark of RFC1-related disorder and characterized by gray as well as white matter involvement. In particular, dorsal columns are severely and diffusely affected. The clinical correlates of these imaging abnormalities still deserve additional investigations. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Sustancia Blanca , Imagen de Difusión por Resonancia Magnética , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética , Tractos Piramidales , Sustancia Blanca/patología
2.
Mov Disord ; 36(11): 2634-2641, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34241918

RESUMEN

BACKGROUND: The cerebellar ataxia, neuropathy, and vestibular areflexia syndrome was initially described in the early 1990s as a late-onset slowly progressive condition. Its underlying genetic cause was recently mapped to the RFC1 gene, and additional reports have expanded on the phenotypic manifestations related to RFC1, although little is known about the pattern and extent of structural brain abnormalities in this condition. OBJECTIVE: The aim is to characterize the structural signature of brain damage in RFC1-related disorder, correlating the findings with clinical symptoms and normal brain RFC1 expression. METHODS: We recruited 22 individuals with molecular confirmation of RFC1 expansions and submitted them to high-resolution 3T magnetic resonance imaging scans. We performed multimodal analyses to assess separately cerebral and cerebellar abnormalities within gray and white matter (WM). The results were compared with a group of 22 age- and sex-matched controls. RESULTS: The mean age and disease duration of patients were 62.8 and 10.9 years, respectively. Ataxia, sensory neuronopathy, and vestibular areflexia were the most frequent manifestations, but parkinsonism and pyramidal signs were also noticed. We found that RFC1-related disorder is characterized by widespread and relatively symmetric cerebellar and basal ganglia atrophy. There is brainstem volumetric reduction along all its segments. Cerebral WM is also involved-mostly the corpus callosum and deep tracts, but cerebral cortical damage is rather restricted. CONCLUSION: This study adds new relevant insights into the pathophysiological mechanisms of RFC1-related disorder. It should no longer be considered a purely cerebellar and sensory pathway disorder. Basal ganglia and deep cerebral WM are additional targets of damage. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Vestibulopatía Bilateral , Ataxia Cerebelosa , Enfermedades Vestibulares , Ataxia , Encéfalo/diagnóstico por imagen , Ataxia Cerebelosa/genética , Cerebelo , Humanos , Imagen por Resonancia Magnética , Enfermedades Vestibulares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA