Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 20(2): 259-267, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36765136

RESUMEN

Single-molecule localization microscopy (SMLM) generates data in the form of coordinates of localized fluorophores. Cluster analysis is an attractive route for extracting biologically meaningful information from such data and has been widely applied. Despite a range of cluster analysis algorithms, there exists no consensus framework for the evaluation of their performance. Here, we use a systematic approach based on two metrics to score the success of clustering algorithms in simulated conditions mimicking experimental data. We demonstrate the framework using seven diverse analysis algorithms: DBSCAN, ToMATo, KDE, FOCAL, CAML, ClusterViSu and SR-Tesseler. Given that the best performer depended on the underlying distribution of localizations, we demonstrate an analysis pipeline based on statistical similarity measures that enables the selection of the most appropriate algorithm, and the optimized analysis parameters for real SMLM data. We propose that these standard simulated conditions, metrics and analysis pipeline become the basis for future analysis algorithm development and evaluation.


Asunto(s)
Algoritmos , Imagen Individual de Molécula , Análisis por Conglomerados , Benchmarking
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047104

RESUMEN

Extracellular vesicles (EVs) have enormous potential for the implementation of liquid biopsy and as effective drug delivery means, but the fulfilment of these expectations requires overcoming at least two bottlenecks relative to their purification, namely the finalization of reliable and affordable protocols for: (i) EV sub-population selective isolation and (ii) the scalability of their production/isolation from complex biological fluids. In this work, we demonstrated that these objectives can be achieved by a conceptually new affinity chromatography platform composed of a macroporous epoxy monolith matrix functionalized with anti-CD63 nanobodies with afflux of samples and buffers regulated through a pump. Such a system successfully captured and released integral EVs from urine samples and showed negligible unspecific binding for circulating proteins. Additionally, size discrimination of eluted EVs was achieved by different elution approaches (competitive versus pH-dependent). The physical characteristics of monolith material and the inexpensive production of recombinant nanobodies make scaling-up the capture unit feasible and affordable. Additionally, the availability of nanobodies for further specific EV biomarkers will allow for the preparation of monolithic affinity filters selective for different EV subclasses.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Anticuerpos de Dominio Único , Biomarcadores/metabolismo , Líquidos Corporales/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Anticuerpos de Dominio Único/metabolismo , Tetraspanina 30
3.
Protein Expr Purif ; 194: 106071, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35172194

RESUMEN

Reliable diagnosis is critical to identify infections of SARS-CoV-2 as well as to evaluate the immune response to virus and vaccines. Consequently, it becomes crucial the isolation of sensitive antibodies to use as immunocapture elements of diagnostic tools. The final bottleneck to achieve these results is the availability of enough antigen of good quality. We have established a robust pipeline for the production of recombinant, functional SARS-CoV-2 Spike receptor binding domain (RBD) at high yield and low cost in culture flasks. RBD was expressed in transiently transfected ExpiCHO cells at 32 °C and 5% CO2 and purified up to 40 mg/L. The progressive protein accumulation in the culture medium was monitored with an immunobinding assay in order to identify the optimal collection time. Successively, a two-step chromatographic protocol enabled its selective purification in the monomeric state. RBD quality assessment was positively evaluated by SDS-PAGE, Western Blotting and Mass Spectrometry, while Bio-Layer Interferometry, flow cytometer and ELISA tests confirmed its functionality. This effective protocol for the RBD production in transient eukaryotic system can be immediately extended to the production of RBD mutants.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Humanos , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
4.
Microb Cell Fact ; 21(1): 52, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392897

RESUMEN

BACKGROUND: Proteins are used as reagents in a broad range of scientific fields. The reliability and reproducibility of experimental data will largely depend on the quality of the (recombinant) proteins and, consequently, these should undergo thorough structural and functional controls. Depending on the downstream application and the biochemical characteristics of the protein, different sets of specific features will need to be checked. RESULTS: A number of examples, representative of recurrent issues and previously published strategies, has been reported that illustrate real cases of recombinant protein production in which careful strategy design at the start of the project combined with quality controls throughout the production process was imperative to obtain high-quality samples compatible with the planned downstream applications. Some proteins possess intrinsic properties (e.g., prone to aggregation, rich in cysteines, or a high affinity for nucleic acids) that require certain precautions during the expression and purification process. For other proteins, the downstream application might demand specific conditions, such as for proteins intended for animal use that need to be endotoxin-free. CONCLUSIONS: This review has been designed to act as a practical reference list for researchers who wish to produce and evaluate recombinant proteins with certain specific requirements or that need particular care for their preparation and storage.


Asunto(s)
Reproducibilidad de los Resultados , Animales , Cromatografía de Afinidad , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
Eur Biophys J ; 50(3-4): 453-460, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33881595

RESUMEN

As the scientific community strives to make published results more transparent and reliable, it has become obvious that poor data reproducibility can often be attributed to insufficient quality control of experimental reagents. In this context, proteins and peptides reagents require much stricter quality controls than those routinely performed on them in a significant proportion of research laboratories. Members of the ARBRE-MOBIEU and the P4EU networks have combined their expertise to generate guidelines for the evaluation of purified proteins used in life sciences and medical trials. These networks, representing more than 150 laboratories specialized in protein production and/or protein molecular biophysics, have implemented such guidelines in their respective laboratories. Over a one-year period, the network members evaluated the contribution these guidelines made toward obtaining more productive, robust and reproducible research by correlating the applied quality controls to given samples with the reliability and reproducibility of the scientific data obtained using these samples in follow-up experiments. The results indicate that QC guideline implementation facilitates the optimization of the protein purification process and improves the reliability of downstream experiments. It seems, therefore, that investing in protein QC might be advantageous to all the stakeholders in life sciences (researchers, editors, and funding agencies alike), because this practice improves data veracity and minimizes loss of valuable time and resources. In the light of these conclusions, the network members suggest that the implementation of these simple QC guidelines should become minimal reporting practice in the publication of data derived from the use of protein and peptide reagents.


Asunto(s)
Exactitud de los Datos , Control de Calidad , Reproducibilidad de los Resultados
6.
Protein Expr Purif ; 172: 105645, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32289357

RESUMEN

Antibody fragments for which the sequence is available are suitable for straightforward engineering and expression in both eukaryotic and prokaryotic systems. When produced as fusions with convenient tags, they become reagents which pair their selective binding capacity to an orthogonal function. Several kinds of immunoreagents composed by nanobodies and either large proteins or short sequences have been designed for providing inexpensive ready-to-use biological tools. The possibility to choose among alternative expression strategies is critical because the fusion moieties might require specific conditions for correct folding or post-translational modifications. In the case of nanobody production, the trend is towards simpler but reliable (bacterial) methods that can substitute for more cumbersome processes requiring the use of eukaryotic systems. The use of these will not disappear, but will be restricted to those cases in which the final immunoconstructs must have features that cannot be obtained in prokaryotic cells. At the same time, bacterial expression has evolved from the conventional procedure which considered exclusively the nanobody and nanobody-fusion accumulation in the periplasm. Several reports show the advantage of cytoplasmic expression, surface-display and secretion for at least some applications. Finally, there is an increasing interest to use as a model the short nanobody sequence for the development of in silico methodologies aimed at optimizing the yields, stability and affinity of recombinant antibodies.


Asunto(s)
Expresión Génica , Pliegue de Proteína , Anticuerpos de Dominio Único , Animales , Humanos , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/aislamiento & purificación
7.
Protein Expr Purif ; 166: 105505, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31563543

RESUMEN

Recombinant antibodies can be expressed as fusion constructs in combination with tags which simplify their engineering into reliable and homogeneous immunoreagents by allowing site-specific, 1:1 functionalization. Several tags and corresponding reagents for recombinant protein derivatization have been proposed but benchmarking surveys for the evaluation of their effect on the characteristics of recombinant antibodies have not been reported. In this work we evaluated the impact on expression yields, shelf-stability, thermostability and binding affinity of a set of C-terminal tags fused to the same anti-Her2 nanobody. Furthermore, we assessed the efficiency of the derivatization process. The constructs always bore a 6xHis tag plus either the controls (EGFP and C-tag) or CLIP, HALO, AviTag, the LEPTG sequence recognized by Sortase A (Sortase tag), or a free cysteine. The advantages and drawbacks of the different systems were analyzed and discussed.


Asunto(s)
Proteínas Recombinantes de Fusión/genética , Anticuerpos de Dominio Único/genética , Unión Competitiva , Cisteína/metabolismo , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Oxidorreductasas/química , Oxidorreductasas/genética , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Estabilidad Proteica , Receptor ErbB-2/química , Receptor ErbB-2/genética , Proteínas Recombinantes de Fusión/química , Anticuerpos de Dominio Único/química
8.
Microb Cell Fact ; 18(1): 181, 2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31655596

RESUMEN

There has been in increasing interest in evaluating research production by means of "objective parameters" which should score the scientific impact of single articles and researchers' career. In contrast, the attention of the economic aspects of research production has been highly neglected. I suggest that introducing the assessment of the return of research investment would be useful for fair comparison among researchers and probably it would render more understandable to public opinion what are the criteria according to which research funds are distributed.


Asunto(s)
Benchmarking/métodos , Apoyo a la Investigación como Asunto/normas , Investigación/economía , Humanos
9.
Appl Microbiol Biotechnol ; 103(11): 4443-4453, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30989251

RESUMEN

The availability of preimmune libraries of antibody fragments allows for the fast generation of binders which can be expressed in both eukaryotic and prokaryotic systems. We exploited the recombinant nature of antibody fragments to demonstrate the possibility of expressing them as functional proteins displayed on the surface of Escherichia coli and by such a way to generate living reagents ready-to-use for diagnostics. Such immunoreagents were effectively exploited without the necessity of any purification step to prepare immunocapture surfaces suitable for the diagnostic of both cancer cells and toxic microalgae. The same nanobody-displaying bacteria were also engineered to coexpress GFP in their cytoplasm. Suspensions of such living fluorescent immunoreagents effectively bound to eukaryotic cells making them visible and quantifiable by flow cytometry analysis and using 96-well plate readers. The collected data showed the suitability of such living immunoreagents for reproducible and inexpensive diagnostic applications.


Asunto(s)
Técnicas de Visualización de Superficie Celular/métodos , Técnicas Citológicas/métodos , Escherichia coli/metabolismo , Proteínas Inmovilizadas/metabolismo , Factores Inmunológicos/metabolismo , Proteínas Recombinantes/metabolismo , Anticuerpos de Dominio Único/metabolismo , Adhesión Bacteriana , Escherichia coli/genética , Proteínas Inmovilizadas/genética , Inmunoensayo/métodos , Factores Inmunológicos/genética , Proteínas Recombinantes/genética , Anticuerpos de Dominio Único/genética , Coloración y Etiquetado/métodos
11.
Protein Expr Purif ; 147: 49-54, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29486247

RESUMEN

The possibility of successfully applying nanomaterials such as biosensors or nanoparticles in diagnostics and therapy is critically dependent on the capacity to optimize their target recognition selectivity and their ability to be delivered minimizing off-side accumulation. Biological macromolecules possess the necessary specificity and for this reason have been often coupled to nanomaterials. However, such process is not straightforward because it often induces structural alterations of the involved macromolecules, in most of the cases proteins or antibodies the functions of which can be hampered when single amino acids are modified. Several strategies have been proposed to rationalize the methodology of macromolecule functionalization with reactive groups and tags that should improve the nanomaterial bio-activation in terms of final yields, process simplicity and reproducibility, and cost-efficiency. This review will describe the features of both chemical and enzymatic reactions exploited to activate polypeptide residues as well as some of the strategies suitable for preparing recombinant proteins fused to tags directly accessible for nanomaterial modification.


Asunto(s)
ADN de Cadena Simple/química , Nanoestructuras/química , Proteínas/química , Proteínas Recombinantes/química , Aminoácidos/química , Técnicas Biosensibles , Modelos Moleculares , Péptidos/química , Conformación Proteica , Proteínas/genética
12.
Microb Cell Fact ; 17(1): 6, 2018 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-29331148

RESUMEN

BACKGROUND: The thorough understanding of the physiological and pathological processes mediated by extracellular vesicles (EVs) is challenged by purification methods which are cumbersome, not reproducible, or insufficient to yield homogeneous material. Chromatography based on both ion-exchange and immune-capture can represent an effective method to improve EV purification and successive analysis. METHODS: Cell culture supernatant was used as a model sample for assessing the capacity of anion-exchange chromatography to separate distinct EV fractions and to isolate nanobodies by direct panning on whole EVs to recover binders specific for the native conformation of EV-surface epitopes and suitable to develop EV immune-capture reagents. RESULTS: Anion-exchange chromatography of cell culture supernatant separated distinct protein-containing fractions and all of them were positive for CD9, a biomarker associated to some EVs. This suggested the existence of several EV fractions but did not help in separating EVs from other contaminants. We further isolated several nanobodies instrumental for implementing immune-affinity protocols. These were able to immobilize EVs from both cell culture supernatant and biological samples, to be used in ELISA, flow-cytometry, and immune-purification. CONCLUSIONS: Here we report the first successful isolation of anti-EV nanobodies for the use in immunoaffinity-based EV capture by panning a phage library directly on partially purified EVs. This achievement paves the way for the application of direct EV panning for the discovery of novel antibody-vesicle surface biomarker pairs and represents the preliminary requirement for the development of selective immune-capture that, in combination with anion-exchange chromatography, can simplify the systematic stratification of EV sub-populations and their individual characterization.


Asunto(s)
Vesículas Extracelulares/química , Inmunoensayo/métodos , Anticuerpos de Dominio Único/aislamiento & purificación , Cromatografía por Intercambio Iónico/métodos , Medios de Cultivo/química , Epítopos/química , Epítopos/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Humanos , Proteínas , Anticuerpos de Dominio Único/análisis
13.
Phys Chem Chem Phys ; 20(5): 3438-3444, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29328338

RESUMEN

Nanobodies offer a viable alternative to antibodies for engineering high affinity binders. Their small size has an additional advantage: it allows exploiting computational protocols for optimizing their biophysical features, such as the binding affinity. The efficient prediction of this quantity is still considered a daunting task especially for modelled complexes. We show how molecular dynamics can successfully assist in the binding affinity prediction of modelled nanobody-protein complexes. The approximate initial configurations obtained by in silico design must undergo large rearrangements before achieving a stable conformation, in which the binding affinity can be meaningfully estimated. The scoring functions developed for the affinity evaluation of crystal structures will provide accurate estimates for modelled binding complexes if the scores are averaged over long finite temperature molecular dynamics simulations.


Asunto(s)
Complejo Antígeno-Anticuerpo/química , Simulación de Dinámica Molecular , Proteínas/inmunología , Anticuerpos de Cadena Única/inmunología , Secuencia de Aminoácidos , Afinidad de Anticuerpos , Complejo Antígeno-Anticuerpo/metabolismo , Humanos , Muramidasa/química , Muramidasa/inmunología , Estructura Terciaria de Proteína , Proteínas/química , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Alineación de Secuencia , Temperatura
14.
Biochem Biophys Res Commun ; 493(4): 1567-1572, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-29017919

RESUMEN

Antibodies are essential reagents that are increasingly used in diagnostics and therapy. Their specificity and capacity to recognize their native antigen are critical characteristics for their in vivo application. Follicle-stimulating hormone receptor is a GPCR protein regulating ovarian follicular maturation and spermatogenesis. Recently, its potentiality as a cancer biomarker has been demonstrated but no antibody suitable for in vivo tumor targeting and treatment has been characterized so far. In this paper we describe the first successful attempt to recover recombinant antibodies against the FSHR and that: i) are directly panned from a pre-immune library using whole cells expressing the target receptor at their surface; ii) show inhibitory activity towards the FSH-induced cAMP accumulation; iii) do not share the same epitope with the natural binder FSH; iv) can be produced inexpensively as mono- or bivalent functional molecules in the bacterial cytoplasm. We expect that the proposed biopanning strategy will be profitable to identify useful functional antibodies for further members of the GPCR class.


Asunto(s)
Biblioteca de Péptidos , Receptores de HFE/antagonistas & inhibidores , Receptores de HFE/inmunología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Animales , Especificidad de Anticuerpos , AMP Cíclico/metabolismo , Femenino , Hormona Folículo Estimulante/farmacología , Células HEK293 , Humanos , Inmunización , Células L , Masculino , Ratones , Dominios Proteicos , Receptores de HFE/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Transducción de Señal , Solubilidad
15.
Blood ; 122(5): 705-14, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23736700

RESUMEN

Escape from immune detection favors both tumor survival and progression, and new approaches to circumvent this are essential to combat cancers. Nonvirulent, tumor-tropic bacteria, such as Salmonella typhimurium, can unmask a tumor by transforming it into a site of inflammation; however, the nonspecific invasiveness of Salmonella leads to off-target effects diluting its therapeutic efficacy and making its use in human patients inherently risky. Here, we demonstrate that Salmonella tumor specificity can be significantly improved via a surface-expressed single-domain antibody directed to a tumor-associated antigen (CD20). Antibody-dependent bacterial targeting specifies the infection of CD20+ lymphoma cells in vitro and in vivo, while significantly diminishing nonspecific cell invasion. Indeed, CD20-targeted Salmonella was less generally invasive, even in organs that normally serve as physiological reservoirs. Furthermore, tumor-specific Salmonella engineered to carry the herpes simplex virus thymidine kinase prodrug-converting enzyme effectively treats human lymphoma xenografts when coadministered intratumorally or intravenously with ganciclovir in mice lacking a functional adaptive immune system. Therefore, tumor-targeted Salmonella could prove effective even in those patients displaying a debilitated immune system, which is often the case with late-stage cancers. Altogether, antibody-displaying Salmonella vectors can mediate a tumor-specific response and rejection with few detectable adverse effects while specifically delivering cytotoxic payloads.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Antígenos CD20/inmunología , Linfoma/terapia , Profármacos/metabolismo , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/metabolismo , Timidina Quinasa/biosíntesis , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Femenino , Expresión Génica , Ingeniería Genética , Humanos , Linfoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Proteínas Recombinantes/genética , Inducción de Remisión/métodos , Salmonella typhimurium/genética , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Timidina Quinasa/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Microb Cell Fact ; 14: 125, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26330219

RESUMEN

BACKGROUND: Antibodies have been a pillar of basic research, while their relevance in clinical diagnostics and therapy is constantly growing. Consequently, the production of both conventional and fragment antibodies constantly faces more demanding challenges for the improvement of their quantity and quality. The answer to such an increasing need has been the development of a wide array of formats and alternative production platforms. This review offers a critical comparison and evaluation of the different options to help the researchers interested in expressing recombinant antibodies in their choice. RESULTS: Rather than the compilation of an exhaustive list of the recent publications in the field, this review intendeds to analyze the development of the most innovative or fast-growing strategies. These have been illustrated with some significant examples and, when possible, compared with the existing alternatives. Space has also been given to those solutions that might represent interesting opportunities or that investigate critical aspects of the production optimization but for which the available data as yet do not allow for a definitive judgment. CONCLUSIONS: The take-home message is that there is a clear process of progressive diversification concerning the antibody expression platforms and an effort to yield directly application-adapted immune-reagents rather than generic naked antibodies that need further in vitro modification steps before becoming usable.


Asunto(s)
Anticuerpos/metabolismo , Formación de Anticuerpos , Proteínas Recombinantes/biosíntesis , Animales , Anticuerpos/uso terapéutico , Ingeniería Genética/métodos , Fragmentos de Inmunoglobulinas/biosíntesis , Indicadores y Reactivos , Mamíferos/genética , Mamíferos/inmunología , Proteínas Recombinantes/genética
17.
Microb Cell Fact ; 13: 140, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25223348

RESUMEN

BACKGROUND: The isolation of recombinant antibody fragments from displayed libraries represents a powerful alternative to the generation of IgGs using hybridoma technology. The selected antibody fragments can then be easily engineered into (multi)-tagged constructs of variable mass and complexity as well as reconstituted into Camelidae IgG-like molecules when expressed fused to Fc domains. Nevertheless, all antibody constructs depend on an oxidizing environment for correct folding and consequently still belong to the proteins difficult to express in bacteria. In such organisms they are mostly produced at low yields in the periplasmic space. RESULTS: We demonstrate that fusion constructs of recombinant antibodies in combination with multiple tags can be produced at high yields and totally functional in the cytoplasm of bacteria expressing sulfhydryl oxidase. The method was applied to structurally demanding molecules such as VHHs fused to SNAP and Fc domains and was validated using the antibody-derived reagents in a variety of immune techniques (FACS, ELISA, WB, IP, SPR, and IF). CONCLUSIONS: The collected data demonstrate the feasibility of a method that establishes a totally new approach for producing rapidly and inexpensively functional Camelidae IgG-like monoclonal antibodies and antibody-based reagents containing multiple disulfide bonds and suitable for both basic research and clinical applications.


Asunto(s)
Camelus/metabolismo , Compartimento Celular , Citoplasma/metabolismo , Escherichia coli/metabolismo , Inmunoglobulina G/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Anticuerpos de Cadena Única/biosíntesis , Animales , Afinidad de Anticuerpos , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Periplasma/metabolismo , Receptor ErbB-2/metabolismo , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167280, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851303

RESUMEN

The Helicase-like Transcription Factor (HLTF) is a member of the SNF2-family of fork remodelers, primarily studied for its capacity to provide DNA Damage Tolerance (DDT) and to induce replication fork reversal (RFR). HLTF is recruited at stalled forks where both its ATPase motor and HIP116 Rad5p N-terminal (HIRAN) domains are necessary for regulating its interaction with DNA. HIRAN bestows specificity to ssDNA 3'-end and imparts branch migration as well as DNA remodeling capabilities facilitating damage repair. Both expression regulation and mutation rate affect HLTF activity. Gene hypermethylation induces loss of HLTF function, in particular in colorectal cancer (CRC), implying a tumour suppressor role. Surprisingly, a correlation between hypermethylation and HLTF mRNA upregulation has also been observed, even within the same cancer type. In many cancers, both complex mutation patterns and the presence of gene Copy Number Variations (CNVs) have been reported. These conditions affect the amount of functional HLTF and question the physiological role of this fork remodeler. This review offers a systematic collection of the presently strewed information regarding HLTF, its structural and functional characteristics, the multiple roles in DDT and the regulation in cancer progression highlighting new research perspectives.

19.
Biomolecules ; 14(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38785994

RESUMEN

BACKGROUND: Fluorescent proteins (FPs) are pivotal reagents for flow cytometry analysis or fluorescent microscopy. A new generation of immunoreagents (fluobodies/chromobodies) has been developed by fusing recombinant nanobodies to FPs. METHODS: We analyzed the quality of such biomolecules by a combination of gel filtration and SDS-PAGE to identify artefacts due to aggregation or material degradation. RESULTS: In the SDS-PAGE run, unexpected bands corresponding to separate fluobodies were evidenced and characterized as either degradation products or artefacts that systematically resulted in the presence of specific FPs and some experimental conditions. The elimination of N-terminal methionine from FPs did not impair the appearance of FP fragments, whereas the stability and migration characteristics of some FP constructs were strongly affected by heating in loading buffer, which is a step samples undergo before electrophoretic separation. CONCLUSIONS: In this work, we provide explanations for some odd results observed during the quality control of fluobodies and summarize practical suggestions for the choice of the most convenient FPs to fuse to antibody fragments.


Asunto(s)
Electroforesis en Gel de Poliacrilamida , Electroforesis en Gel de Poliacrilamida/métodos , Anticuerpos de Dominio Único/química , Humanos , Cromatografía en Gel , Citometría de Flujo/normas , Citometría de Flujo/métodos , Control de Calidad
20.
ACS Sens ; 9(6): 3066-3074, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38877998

RESUMEN

Point-of-care testing (POCT) devices play a crucial role as tools for disease diagnostics, and the integration of biorecognition elements with electronic components into these devices widens their functionalities and facilitates the development of complex quantitative assays. Unfortunately, biosensors that exploit large conventional IgG antibodies to capture relevant biomarkers are often limited in terms of sensitivity, selectivity, and storage stability, considerably restricting the use of POCT in real-world applications. Therefore, we used nanobodies as they are more suitable for fabricating electrochemical biosensors with near-field communication (NFC) technology. Moreover, a flow-through microfluidic device was implemented in this system for the detection of C-reactive protein (CRP), an inflammation biomarker, and a model analyte. The resulting sensors not only have high sensitivity and portability but also retain automated sequential flow properties through capillary transport without the need for an external pump. We also compared the accuracy of CRP quantitative analyses between commercial PalmSens4 and NFC-based potentiostats. Furthermore, the sensor reliability was evaluated using three biological samples (artificial serum, plasma, and whole blood without any pretreatment). This platform will streamline the development of POCT devices by combining operational simplicity, low cost, fast analysis, and portability.


Asunto(s)
Técnicas Biosensibles , Proteína C-Reactiva , Técnicas Electroquímicas , Dispositivos Laboratorio en un Chip , Anticuerpos de Dominio Único , Teléfono Inteligente , Proteína C-Reactiva/análisis , Proteína C-Reactiva/inmunología , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Técnicas Analíticas Microfluídicas/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA