Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 123: 103780, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108809

RESUMEN

In the developing retina, precise coordination of cell proliferation, differentiation, and survival is essential for proper retinal maturation and function. We have previously reported evidence that interleukin-4 (IL-4) plays critical roles in neuronal differentiation and survival during retinal development. However, little is known about the role of IL-4 on retinal cell proliferation. In the current study, we investigated if IL-4 regulates cell proliferation induced by epidermal growth factor (EGF) and by fibroblast growth factor 2 (FGF2) in primary retinal cell cultures obtained from newborn rats. First, we show that EGF and FGF2 act as mitogens for glial cells, increasing proliferation of these cells in the retina. EGF- and FGF2-induced mitogenesis requires activation of distinct cell-intrinsic signals. In retinal cells exposed to FGF2, IL-4 downregulates p53 levels (a protein whose activation induces cell-cycle arrest) and increases mitogenic responsiveness to FGF2 through activation of protein kinase A (PKA) pathway. Conversely, in retinal cells exposed to EGF, IL-4 downregulates cyclin D1 levels (a protein required for cell-cycle progression), upregulates p53 levels, and decreases mitogenic responsiveness to EGF. The inhibitory effect induced by IL-4 on retinal cells exposed to EGF requires activation of Janus kinase 3 (JAK3), but not activation of PKA. Based on previous and current findings, we propose that IL-4 serves as a node of signal divergence, modulating multiple cell-intrinsic signals (e.g., cyclin D1, p53, JAK3, and PKA) and mitogenic responsiveness to cell-extrinsic signals (e.g., FGF2 and EGF) to control cell proliferation, differentiation, and survival during retinal development.


Asunto(s)
Ciclina D1 , Factor de Crecimiento Epidérmico , Ratas , Animales , Ciclina D1/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Interleucina-4/farmacología , Interleucina-4/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proteína p53 Supresora de Tumor , Proliferación Celular , Retina/metabolismo
2.
Biochem Biophys Res Commun ; 519(1): 53-60, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31474338

RESUMEN

Trophic factors are involved in different cellular responses. Previously we demonstrated that IL-4 treatment induces an increase in retinal ganglion cell survival (RGCS) and regulates cholinergic differentiation of retinal cells in vitro. Data from literature show that IGF-1 also promotes RGCS, an effect mediated by PI-3K/AKT pathway. The aim of this study was to investigate the role of IGF-1 and IGF-1R on RGCS mediated by IL-4 treatment and the role of M1 acetylcholine receptors in this effect. Here we show that the effect of IL-4 on RGCS depends on IGF-1 and IGF-1R activation, the PI-3K/AKT and NFkB intracellular pathways and depends on M1 mAChRs activation. IGF-1 increases the levels of M1 mAChRs in 15min, 45min, 24 h and 48 h in mixed retinal cells culture, modulates the levels of IL-4, pIGF-1R, IGF-1R. IL-4 modulates IGF-1, pIGF-1R and IGF-1R levels in different time intervals. These results put in evidence a crosstalk between IL-4 and IGF-1 and a role of M1 mAChRs, IGF-1 and IGF-1R in RGCS mediated by IL-4.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-4/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor Muscarínico M1/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Ratas , Células Ganglionares de la Retina/citología
3.
Curr Res Neurobiol ; 4: 100068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36589675

RESUMEN

Insulin-like growth factor-1 (IGF-1) plays critical roles in the development of the central nervous system (CNS), including the retina, regulating cell proliferation, differentiation, and survival. Here, we investigated the role of IGF-1 on retinal cell proliferation using primary cultures from rat neural retina. Our data show that IGF-1 stimulates retinal cell proliferation and regulates the expression of neurotrophic factors, such as interleukin-4 and brain-derived neurotrophic factor. In addition, our results indicates that IGF-1-induced retinal cell proliferation requires activation of multiple signaling pathways, including phosphatidylinositol 3-kinase, protein kinase Src, phospholipase-C, protein kinase C delta, and mitogen-activated protein kinase pathways. We further show that activation of matrix metalloproteinases and epidermal growth factor receptor is also necessary for IGF-1 enhancing retinal cell proliferation. Overall, these results unveil potential mechanisms by which IGF-1 ensures retinal cell proliferation and support the notion that manipulation of IGF-1 signaling may be beneficial in CNS disorders associated with abnormal cell proliferation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA