Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Inorg Chem ; 28(1): 101-115, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36484824

RESUMEN

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disease that can result in disability. Until now, there is no antiviral treatment against CHIKV, demonstrating that there is a need for development of new drugs. Studies have shown that thiosemicarbazones and their metal complexes possess biological activities, and their synthesis is simple, clean, versatile, and results in high yields. Here, we evaluated the mechanism of action (MOA) of a cobalt(III) thiosemicarbazone complex named [CoIII(L1)2]Cl based on its in vitro potent antiviral activity against CHIKV previously evaluated (80% of inhibition on replication). Furthermore, the complex has no toxicity in healthy cells, as confirmed by infecting BHK-21 cells with CHIKV-nanoluciferase in the presence of the compound, showing that [CoIII(L1)2]Cl inhibited CHIKV infection with the selective index of 3.26. [CoIII(L1)2]Cl presented a post-entry effect on viral replication, emphasized by the strong interaction of [CoIII(L1)2]Cl with CHIKV non-structural protein 4 (nsP4) in the microscale thermophoresis assay, suggesting a potential mode of action of this compound against CHIKV. Moreover, in silico analyses by molecular docking demonstrated potential interaction of [CoIII(L1)2]Cl with nsP4 through hydrogen bonds, hydrophobic and electrostatic interactions. The evaluation of ADME-Tox properties showed that [CoIII(L1)2]Cl presents appropriate lipophilicity, good human intestinal absorption, and has no toxicological effect as irritant, mutagenic, reproductive, and tumorigenic side effects.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/metabolismo , Virus Chikungunya/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/farmacología , Proteínas no Estructurales Virales/uso terapéutico , Cobalto/farmacología , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Antivirales/uso terapéutico
2.
Inorg Chem ; 57(1): 218-230, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29227104

RESUMEN

A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L3-edge XAS probed the interaction of gold and the C-terminal Cys2HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys2His2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)]2+ and [Au(dien)(DMAP)]3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)]2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)]3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)]3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental observation that not only compound reactivity, but also ZnF core specificity, can be modulated on the basis of the coordination sphere of Au(III) compounds.

3.
Acta Trop ; 227: 106300, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34979144

RESUMEN

Most of the patients infected with Chikungunya virus (CHIKV) develop chronic manifestations characterized by pain and deformity in joints, impacting their quality of life. The aminoadamantanes, in their turn, have been exploited due to their biological activities, with amantadine and memantine recently described with anti-CHIKV activities. Here we evaluated the antiviral activity of rimantadine hydrochloride (rtdH), a well-known antiviral agent against influenza A, its platinum complex (Pt-rtd), and the precursor cis-[PtCl2(dmso)2], against CHIKV infection in vitro. The rtdH demonstrated significant antiviral activity in all stages of CHIKV replication (29% in pre-treatment; 57% in early stages of infection; 60% in post-entry stages). The Pt-rtd complex protected the cells against infection in 92%, inhibited 100% of viral entry, mainly by a virucidal effect, and impaired 60% of post-entry stages. Alternatively, cis-[PtCl2(dmso)2] impaired viral entry in 100% and post-entry steps in 60%, but had no effect in protecting cells when administered prior to CHIKV infection. Collectively, the obtained data demonstrated that rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, with the strongest effect observed to Pt-rtd complex, which reduced up to 100% of CHIKV infection. Moreover, molecular docking analysis and infrared spectroscopy data (ATR-FTIR) suggest an interaction of Pt-rtd with CHIKV glycoproteins, potentially related to the mechanism of inhibition of viral entry by Pt-rtd. Through a migration retardation assay, it was also shown that Pt-rtd and cis-[PtCl2(dmso)2] interacted with the dsRNA in 87% and 100%, respectively. The obtained results highlight the repurposing potential of rtdH as an anti-CHIKV drug, as well as the synthesis of promising platinum(II) metallodrugs with potential application for the treatment of CHIKV infections. Importance Chikungunya fever is a disease that can result in persistent symptoms due to the chronic infection process. Infected patients can develop physical disability, resulting and high costs to the health system and significant impacts on the quality of life of affected individuals. Additionally, there are no licensed vaccines or antivirals against the Chikungunya virus (CHIKV) and the virus is easily transmitted due to the abundance of viable vectors in epidemic regions. In this context, our study highlights the repurposing potential of the commercial drug rimantadine hydrochloride (rtdH) as an antiviral agent for the treatment of CHIKV infections. Moreover, our data demonstrated that a platinum(II)-rimantadine metallodrug (Pt-rtd) poses as a potent anti-CHIKV molecule with potential application for the treatment of Chikungunya fever. Altogether, rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, reducing up to 100% of CHIKV infection in vitro.


Asunto(s)
Fiebre Chikungunya , Rimantadina , Línea Celular , Fiebre Chikungunya/tratamiento farmacológico , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Calidad de Vida , Rimantadina/farmacología , Rimantadina/uso terapéutico , Replicación Viral
4.
J Inorg Biochem ; 234: 111881, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35691262

RESUMEN

To further explore the structural features and potential antibacterial and antitumor activities of polynuclear CuII coordination compounds with nalidixic acid (nx) derivatives, new complexes bearing nx hydrazones with N-pyridinyl moieties substituted at positions 2 and 3 (h2py and h3py) were synthesized. Complexes [Cu3(C18H16N5O2)2(C18H17N5O2)2(H2O)]4BF4∙H2O (1), and [Cu3(C18H16N5O2)2(C18H17N5O2)2(H2O)3]4BF4∙3H2O (%) (2) were synthesized using h2py and h3py with Cu(BF4)2∙nH2O as precursor, whereas the [Cu(C18H17N5O2)Cl2]∙0.5H2O complex (3) was synthesized with h2py and CuCl2∙2H2O. Crystallographic studies of complex 1, showed that coordination of hydrazones to CuII occurs by tridentate modes of type κ3(O,N,N') as well as bidentate modes of type κ2(O',N″). Complexes 1, 2 and 3 had their antiproliferative activities evaluated in vitro against a panel of tumor cells by the determination of GI50 values. Complexes 1 and 2 were more active than complex 3, suggesting an effect of the complex charge on their activities. The interactions of such complexes towards bovine serum albumin (BSA) and DNA plasmid (pGEX-4 T1) were investigated using fluorescence spectroscopy and gel electrophoresis. All complexes were shown to interact with the DNA model as metallonucleases, but no interaction with BSA was observed. DNA molecular docking of complex 1 encompassing both its trinuclear (TN) form and a possible mononuclear (MN) derivative suggests that naphthyridyl ring performs π-stacking interactions with DNA. The TN species were also shown to be possible minor groove binders.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Cristalografía por Rayos X , ADN/química , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , Ácido Nalidíxico , Piridinas/química , Piridinas/farmacología , Albúmina Sérica Bovina/química
5.
Pharmaceutics ; 14(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214194

RESUMEN

Oxidative stress and inflammation act on skin squamous cell carcinoma (SSCC) development and progression. Curative therapy for SSCC patients is mainly based on surgical resection, which can cause various sequelae. Silver ions have in vitro activities over tumor cells, while nimesulide has antioxidant and anti-inflammatory activities. This study aimed to evaluate the effects of a silver(I) complex with nimesulide (AgNMS) incorporated in a sustained release device based on bacterial cellulose membrane, named AgNMS@BCM, on topic SSCC treatment. The antiproliferative effect of AgNMS complex was evaluated in the SCC4, SCC15 and FaDu SCC lines. AgNMS complex activity on exposure of phosphatidylserine (PS) residues and multicaspase activation were evaluated on FaDu cells by flow cytometry. The AgNMS@BCM effects were evaluated in a SSCC model induced by 7,12-dimethylbenzanthracene/12-o-tetradecanoyl-phorbol-13-acetate (DMBA/TPA) in mice. Toxicity and tumor size were evaluated throughout the study. AgNMS complex showed antiproliferative activity in SCC15 and FaDu lines in low to moderate concentrations (67.3 µM and 107.3 µM, respectively), and induced multicaspase activation on FaDu cells. The AgNMS@BCM did not induce toxicity and reduced tumor size up to 100%. Thus, the application of AgNMS@BCM was effective and safe in SSCC treatment in mice, and can be seen as a potential and safe agent for topic treatment of SSCC in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA