Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Oral Investig ; 26(6): 4479-4486, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35435492

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the effect of four different finishing procedures on the fatigue strength of a fully stabilized zirconia (5Y-FSZ) material. MATERIALS AND METHODS: Disc-shaped specimens of a 5Y-FSZ (Katana UTML, Kuraray Noritake) were made (ISO 6872-2015), grinded with 600- and 1200-grit silicon carbide paper, sintered as recommended, and randomly assigned into four groups according to the finishing technique: C (control, as-sintered), P (polished with polishing rubbers), G (glaze application - powder/liquid technique), and PG (polished with polishing rubbers + glaze application - powder/liquid). Then fatigue strength (staircase method), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses were performed. RESULTS: The C group presented the lowest fatigue strength, while the PG group presented the highest. The P and G groups presented intermediate behavior, presenting similar statistical results. XRD showed similar crystalline phase patterns for all groups. SEM images revealed some changes in the zirconia surface, with the P group presenting some scratches on the surface, while the scratches in the PG group were filled with the glaze material. CONCLUSION: None of the techniques analyzed in this study impaired the fatigue strength of fully stabilized zirconia. Importantly, the polishing rubbers combined with glaze application (PG group) improved its fatigue strength. CLINICAL RELEVANCE: The polishing rubbers followed by glaze application improve the fatigue strength in ultra-translucent zirconia.


Asunto(s)
Ensayo de Materiales , Circonio , Cerámica/química , Pulido Dental , Humanos , Microscopía Electrónica de Rastreo , Polvos , Propiedades de Superficie , Circonio/química
2.
Comput Methods Biomech Biomed Engin ; 24(9): 1026-1034, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33410710

RESUMEN

This study evaluated the polymerization shrinkage stress of three tooth preparation designs for indirect ceramic overlay by finite element analysis: isthmus preparation (IST); without isthmus preparation (wIST); and non-retentive preparation (nRET). The models were created based in prepared dental typodonts and were digitally impressed with an intraoral scanner. The interfaces in all models were considered perfectly bonded and all materials were considered homogeneous, linear, and isotropic. The polymerization shrinkage of the cement layer (100 µm) was simulated and evaluated by maximum principal stress criteria. The stress peaks followed this sequence: restoration = IST (13.4 MPa) > wIST (9.3 MPa) > nRET (9 MPa); cement layer = IST (16.9 MPa) > wIST (12.6 MPa) > nRET (10-7.5 MPa); and teeth = IST (10.7 MPa) > wIST (10.5 MPa) > (9 MPa). For the cement layer, the non-retentive preparation (nRET) had the lowest shrinkage stress from all the groups, obtaining a more homogeneous stress distribution on the cement surface. Regarding the abutment teeth, the IST generated a higher shrinkage stress area on the dental structure, concentrating higher stress magnitude at the axiopulpar and axiogingival angles. Non-retentive preparation seems to reduce polymerization shrinkage stress.


Asunto(s)
Imagenología Tridimensional , Resinas Compuestas , Análisis del Estrés Dental , Análisis de Elementos Finitos , Humanos , Ensayo de Materiales , Polimerizacion , Estrés Mecánico
3.
Dent Mater ; 34(10): 1483-1491, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29945797

RESUMEN

OBJECTIVES: The aim of this study was to characterize the microstructure of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics and evaluate their mechanical properties before and after the crystallization firing process (CFP). METHODS: Field emission-scanning electron microscope (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed for microstructural characterization. To evaluate the pattern of crystallization and the molecular composition of ZLS glass-ceramics, was used X-ray diffraction (XRD). Vickers hardness, fracture toughness by the indentation method, and biaxial flexural strength were also measured. One hundred and forty ceramic discs were produced (diameter=12mm; thickness=1.2mm) and allocated among four groups (n=30): Sfir, Sunf-ZLS Vita Suprinity; and Cfir and Cunf-ZLS Celtra Duo; fired and unfired, respectively. Statistical analysis was performed and Weibull failure probabilities were calculated. RESULTS: Cfir showed the highest characteristic strength (251.25MPa) and hardness (693.333±10.85GPa). Conversely, Sunf presented the lowest characteristic strength (106.95MPa) and significantly lowest hardness (597.533±33.97GPa). According to Weibull analysis, Sunf had the highest structural reliability (m=7.07), while Sfir presented the lowest (m=5.38). The CFP was necessary to crystallize zirconia in the partially crystallized ZLS glass-ceramics. Sfir had a lower percentage of crystallized zirconia than did Cfir. Fractographic analyses showed that all failures initiated from an inherent critical defect in Sunf and from processing defects in the remaining groups. SIGNIFICANCE: The CFP had a direct influence on the flexural strength and microstructural characteristics of both ZLS materials.


Asunto(s)
Cerámica/química , Porcelana Dental/química , Circonio/química , Cristalización , Fracaso de la Restauración Dental , Resistencia Flexional , Dureza , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Propiedades de Superficie , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA