Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Intensive Care Med ; 35(6): 595-605, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29716425

RESUMEN

OBJECTIVES: An early diagnosis of intensive care unit-acquired weakness (ICU-AW) is often not possible due to impaired consciousness. To avoid a diagnostic delay, we previously developed a prediction model, based on single-center data from 212 patients (development cohort), to predict ICU-AW at 2 days after ICU admission. The objective of this study was to investigate the external validity of the original prediction model in a new, multicenter cohort and, if necessary, to update the model. METHODS: Newly admitted ICU patients who were mechanically ventilated at 48 hours after ICU admission were included. Predictors were prospectively recorded, and the outcome ICU-AW was defined by an average Medical Research Council score <4. In the validation cohort, consisting of 349 patients, we analyzed performance of the original prediction model by assessment of calibration and discrimination. Additionally, we updated the model in this validation cohort. Finally, we evaluated a new prediction model based on all patients of the development and validation cohort. RESULTS: Of 349 analyzed patients in the validation cohort, 190 (54%) developed ICU-AW. Both model calibration and discrimination of the original model were poor in the validation cohort. The area under the receiver operating characteristics curve (AUC-ROC) was 0.60 (95% confidence interval [CI]: 0.54-0.66). Model updating methods improved calibration but not discrimination. The new prediction model, based on all patients of the development and validation cohort (total of 536 patients) had a fair discrimination, AUC-ROC: 0.70 (95% CI: 0.66-0.75). CONCLUSIONS: The previously developed prediction model for ICU-AW showed poor performance in a new independent multicenter validation cohort. Model updating methods improved calibration but not discrimination. The newly derived prediction model showed fair discrimination. This indicates that early prediction of ICU-AW is still challenging and needs further attention.


Asunto(s)
Reglas de Decisión Clínica , Hospitalización/estadística & datos numéricos , Unidades de Cuidados Intensivos , Debilidad Muscular/diagnóstico , Respiración Artificial/estadística & datos numéricos , Anciano , Área Bajo la Curva , Calibración , Cuidados Críticos/estadística & datos numéricos , Diagnóstico Tardío/prevención & control , Femenino , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/etiología , Países Bajos , Pronóstico , Estudios Prospectivos , Curva ROC , Estándares de Referencia , Factores de Riesgo
2.
Crit Care Med ; 46(1): 29-36, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28991822

RESUMEN

OBJECTIVES: The presence of respiratory viruses and the association with outcomes were assessed in invasively ventilated ICU patients, stratified by admission diagnosis. DESIGN: Prospective observational study. SETTING: Five ICUs in the Netherlands. PATIENTS: Between September 1, 2013, and April 30, 2014, 1,407 acutely admitted and invasively ventilated patients were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Nasopharyngeal swabs and tracheobronchial aspirates were collected upon intubation and tested for 14 respiratory viruses. Out of 1,407 patients, 156 were admitted because of a severe acute respiratory infection and 1,251 for other reasons (non-severe acute respiratory infection). Respiratory viruses were detected in 28.8% of severe acute respiratory infection patients and 17.0% in non-severe acute respiratory infection (p < 0.001). In one third, viruses were exclusively detected in tracheobronchial aspirates. Rhinovirus and human metapneumovirus were more prevalent in severe acute respiratory infection patients (9.6% and 2.6% vs 4.5 and 0.2%; p = 0.006 and p < 0.001). In both groups, there were no associations between the presence of viruses and the number of ICU-free days at day 28, crude mortality, and mortality in multivariate regression analyses. CONCLUSIONS: Respiratory viruses are frequently detected in acutely admitted and invasively ventilated patients. Rhinovirus and human metapneumovirus are more frequently found in severe acute respiratory infection patients. Detection of respiratory viruses is not associated with worse clinically relevant outcomes in the studied cohort of patients.


Asunto(s)
Infección Hospitalaria/virología , Unidades de Cuidados Intensivos , Respiración Artificial , Infecciones del Sistema Respiratorio/virología , Virosis/virología , Adulto , Anciano , Anciano de 80 o más Años , Infección Hospitalaria/mortalidad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Países Bajos , Estudios Prospectivos , Infecciones del Sistema Respiratorio/mortalidad , Virosis/mortalidad
3.
Am J Respir Crit Care Med ; 196(12): 1544-1558, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28787181

RESUMEN

RATIONALE: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency and increases morbidity, duration of hospital stay, and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial dysfunction and oxidative stress. OBJECTIVES: We hypothesized that weakness of diaphragm muscle fibers in critically ill patients is accompanied by impaired mitochondrial function and structure, and by increased markers of oxidative stress. METHODS: To test these hypotheses, we studied contractile force, mitochondrial function, and mitochondrial structure in diaphragm muscle fibers. Fibers were isolated from diaphragm biopsies of 36 mechanically ventilated critically ill patients and compared with those isolated from biopsies of 27 patients with suspected early-stage lung malignancy (control subjects). MEASUREMENTS AND MAIN RESULTS: Diaphragm muscle fibers from critically ill patients displayed significant atrophy and contractile weakness, but lacked impaired mitochondrial respiration and increased levels of oxidative stress markers. Mitochondrial energy status and morphology were not altered, despite a lower content of fusion proteins. CONCLUSIONS: Critically ill patients have manifest diaphragm muscle fiber atrophy and weakness in the absence of mitochondrial dysfunction and oxidative stress. Thus, mitochondrial dysfunction and oxidative stress do not play a causative role in the development of atrophy and contractile weakness of the diaphragm in critically ill patients.


Asunto(s)
Diafragma/fisiopatología , Mitocondrias , Debilidad Muscular/fisiopatología , Atrofia Muscular/fisiopatología , Estrés Oxidativo , Adulto , Anciano , Biopsia , Enfermedad Crítica , Femenino , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Respiración Artificial , Adulto Joven
4.
Int J Mol Sci ; 19(7)2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986381

RESUMEN

The beneficial effects of exercise training (EX) on cardiac pathology are well recognized. Previously, we found that the effects of EX on cardiac dysfunction in mice critically depend on the underlying etiology. EX exerted beneficial effects after myocardial infarction (MI); however, cardiac pathology following pressure overload produced by transverse aortic constriction (TAC) was aggravated by EX. In the presented study, we investigated whether the contrasting effects of EX on cardiac dysfunction can be explained by an etiology-specific response of endothelial nitric oxide (NO) synthase (eNOS) to EX, which divergently affects the balance between nitric oxide and superoxide. For this purpose, mice were exposed to eight weeks of voluntary wheel running or sedentary housing (SED), immediately after sham, MI, or TAC surgery. Left ventricular (LV) function was assessed using echocardiography and hemodynamic measurements. EX ameliorated LV dysfunction and remodeling after MI, but not following TAC, in which EX even aggravated fibrosis. Strikingly, EX attenuated superoxide levels after MI, but exacerbated NOS-dependent superoxide levels following TAC. Similarly, elevated eNOS S-glutathionylation and eNOS monomerization, which were observed in both MI and TAC, were corrected by EX in MI, but aggravated by EX after TAC. Additionally, EX reduced antioxidant activity in TAC, while it was maintained following EX in MI. In conclusion, the present study shows that EX mitigates cardiac dysfunction after MI, likely by attenuating eNOS uncoupling-mediated oxidative stress, whereas EX tends to aggravate cardiac dysfunction following TAC, likely due to exacerbating eNOS-mediated oxidative stress.


Asunto(s)
Estenosis de la Válvula Aórtica/enzimología , Estenosis de la Válvula Aórtica/rehabilitación , Infarto del Miocardio/enzimología , Infarto del Miocardio/rehabilitación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Condicionamiento Físico Animal , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Fibrosis , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Óxido Nítrico/metabolismo , Estrés Oxidativo , Conducta Sedentaria , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Función Ventricular Izquierda
5.
PLoS Genet ; 10(10): e1004686, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25299392

RESUMEN

As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.


Asunto(s)
Envejecimiento , Proteínas de Unión al ADN/deficiencia , Enfermedades Carenciales/etiología , Endonucleasas/deficiencia , Proteínas Nucleares/deficiencia , Factores de Transcripción/deficiencia , Envejecimiento/genética , Animales , Encéfalo/patología , Caquexia/etiología , Caquexia/genética , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/fisiopatología , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enfermedades Carenciales/genética , Modelos Animales de Enfermedad , Endonucleasas/genética , Endonucleasas/metabolismo , Femenino , Hígado/patología , Longevidad/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoporosis/etiología , Osteoporosis/genética , Embarazo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
J Surg Res ; 205(1): 147-54, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27621012

RESUMEN

BACKGROUND: Traumatic brain injury (TBI)-related coagulopathy appears to be most prevalent in patients with tissue hypoperfusion, but evidence for this association is scarce. This study investigated the relationship between tissue perfusion and hemostatic derangements in TBI patients. MATERIALS AND METHODS: Coagulation parameters were measured on emergency department admission in patients with TBI (head abbreviated injury scale ≥ 3). The level of hypoperfusion was simultaneously assessed by near-infrared spectroscopy (NIRS) at the forehead and arm, and by base excess and lactate. Coagulopathy was defined as an international normalized ratio > 1.2 and/or activated partial thromboplastin time > 40 s and/or thrombocytopenia (<120 × 10(9)/L). RESULTS: TBI patients with coagulopathy (42%) had more signs of tissue hypoperfusion as indicated by increased lactate levels (2.1 [1.1-3.2] mmol/L versus 1.2 [1.0-1.7] mmol/L; P = 0.017) and a larger base deficit (-3.0 [-4.6 to -2.0] mmol/L versus -0.1 [-2.5 to 1.8] mmol/L; P < 0.001). There was no difference in the cerebral or somatic tissue oxygenation index. However, there was a distinct trend toward a moderate inverse association between the cerebral tissue oxygenation index and D-dimer levels (r=-0.40; P = 0.051) as marker of fibrinolysis. The presence of coagulopathy was associated with an increased inhospital mortality rate (45.5% versus 6.7%; P = 0.002). CONCLUSIONS: This is the first study to investigate the relationship between hemostatic derangements and tissue oxygenation using NIRS in TBI patients. This study showed that TBI-related coagulopathy is more profound in patients with metabolic acidosis and increased lactate levels. Although there was no direct relationship between tissue oxygenation and coagulopathy, we observed an inverse relationship between NIRS tissue oxygenation levels and fibrinolysis.


Asunto(s)
Trastornos de la Coagulación Sanguínea/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Oxígeno/sangre , Adulto , Anciano , Trastornos de la Coagulación Sanguínea/sangre , Lesiones Traumáticas del Encéfalo/sangre , Circulación Cerebrovascular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
7.
Crit Care ; 20: 55, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26968380

RESUMEN

BACKGROUND: The safety of perioperative hyperoxia is currently unclear. Previous studies in patients undergoing coronary artery bypass surgery suggest reduced myocardial damage when avoiding extreme perioperative hyperoxia (>400 mmHg). In this study we investigated whether an oxygenation strategy from moderate hyperoxia to a near-physiological oxygen tension reduces myocardial damage and improves haemodynamics, organ dysfunction and oxidative stress. METHODS: This was a single-blind, single-centre, open-label, randomised controlled trial in patients undergoing elective coronary artery bypass surgery. Fifty patients were randomised to a partial pressure of oxygen in arterial blood (PaO2) target of 200-220 mmHg during cardiopulmonary bypass and 130-150 mmHg during intensive care unit (ICU) admission (control group) versus lower targets of 130-150 mmHg during cardiopulmonary bypass and 80-100 mmHg at the ICU (conservative group). Primary outcome was myocardial injury (CK-MB and Troponin-T) at ICU admission and 2, 6 and 12 hours thereafter. RESULTS: Weighted PaO2 during cardiopulmonary bypass was 220 mmHg (interquartile range (IQR) 211-233) vs. 157 (151-162) in the control and conservative group, respectively (P < 0.0001). During ICU admission, weighted PaO2 was 107 mmHg (86-141) vs. 90 (84-98) (P = 0.03), respectively. Area under the curve of CK-MB was median 23.5 µg/L/h (IQR 18.4-28.1) vs. 21.5 (15.8-26.6) (P = 0.35) and 0.30 µg/L/h (0.25-0.44) vs. 0.39 (0.24-0.43) (P = 0.81) for Troponin-T. Cardiac index, systemic vascular resistance index, creatinine, lactate and F2-isoprostane levels were not different between groups. CONCLUSIONS: Compared to moderate hyperoxia, a near-physiological oxygen strategy does not reduce myocardial damage in patients undergoing coronary artery bypass surgery. Conservative oxygen administration was not associated with increased lactate levels or hypoxic events. TRIAL REGISTRATION: Netherlands Trial Registry NTR4375, registered on 30 January 2014.


Asunto(s)
Puente de Arteria Coronaria/efectos adversos , Puente de Arteria Coronaria/mortalidad , Hiperoxia/metabolismo , Hiperoxia/cirugía , Anciano , Anestesia , Análisis de los Gases de la Sangre , Femenino , Humanos , Hiperoxia/patología , Complicaciones Intraoperatorias/prevención & control , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/métodos , Países Bajos , Complicaciones Posoperatorias/prevención & control , Método Simple Ciego
8.
Am J Respir Crit Care Med ; 191(10): 1126-38, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25760684

RESUMEN

RATIONALE: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency, and increases morbidity and duration of hospital stay. To date, the nature of diaphragm weakness and its underlying pathophysiologic mechanisms are poorly understood. OBJECTIVES: We hypothesized that diaphragm muscle fibers of mechanically ventilated critically ill patients display atrophy and contractile weakness, and that the ubiquitin-proteasome pathway is activated in the diaphragm. METHODS: We obtained diaphragm muscle biopsies from 22 critically ill patients who received mechanical ventilation before surgery and compared these with biopsies obtained from patients during thoracic surgery for resection of a suspected early lung malignancy (control subjects). In a proof-of-concept study in a muscle-specific ring finger protein-1 (MuRF-1) knockout mouse model, we evaluated the role of the ubiquitin-proteasome pathway in the development of contractile weakness during mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: Both slow- and fast-twitch diaphragm muscle fibers of critically ill patients had approximately 25% smaller cross-sectional area, and had contractile force reduced by half or more. Markers of the ubiquitin-proteasome pathway were significantly up-regulated in the diaphragm of critically ill patients. Finally, MuRF-1 knockout mice were protected against the development of diaphragm contractile weakness during mechanical ventilation. CONCLUSIONS: These findings show that diaphragm muscle fibers of critically ill patients display atrophy and severe contractile weakness, and in the diaphragm of critically ill patients the ubiquitin-proteasome pathway is activated. This study provides rationale for the development of treatment strategies that target the contractility of diaphragm fibers to facilitate weaning.


Asunto(s)
Enfermedad Crítica , Diafragma/fisiopatología , Debilidad Muscular/fisiopatología , Atrofia Muscular/fisiopatología , Complejo de la Endopetidasa Proteasomal/metabolismo , Respiración Artificial/efectos adversos , Ubiquitina/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biopsia , Western Blotting , Estudios de Casos y Controles , Diafragma/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Tiempo de Internación , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares , Debilidad Muscular/etiología , Debilidad Muscular/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Países Bajos , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Adulto Joven
9.
Anesthesiology ; 123(4): 820-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26263429

RESUMEN

BACKGROUND: The authors investigated whether patients with out-of-hospital cardiac arrest with an initial low cerebral oxygen level during cardiopulmonary resuscitation are more prone to develop hyperfibrinolysis than patients with normal cerebral oxygenation levels and which part of the fibrinolytic system is involved in this response. METHODS: In 46 patients, hyperfibrinolysis was diagnosed immediately upon emergency department admission using rotational thromboelastometry and defined as a lysis more than 15%. Simultaneously, initial cerebral tissue oxygenation was measured using near-infrared spectroscopy, and oxygen desaturation was defined as a tissue oxygenation index (TOI) of 50% or less. Blood sample analysis included markers for hypoperfusion and fibrinolysis. RESULTS: There was no difference in prehospital cardiopulmonary resuscitation duration between patients with or without hyperfibrinolysis. An initial TOI of 50% or less was associated with more clot lysis (91% [17 to 100%; n = 16]) compared with patients with a normal TOI (6% [4 to 11%]; n = 30; P < 0.001), with lower levels of plasminogen (151.6 ± 61.0 vs. 225.3 ± 47.0 µg/ml; P < 0.001) and higher levels of tissue plasminogen activator (t-PA; 18.3 ± 7.4 vs. 7.9 ± 4.7 ng/ml; P < 0.001) and plasminogen activator inhibitor-1 (19.3 ± 8.9 vs. 12.1 ± 6.1 ng/ml; P = 0.013). There were no differences in (activated) protein C levels among groups. The initial TOI was negatively correlated with t-PA (r = -0.69; P < 0001). Mortality rates were highest in patients with hyperfibrinolysis. CONCLUSION: Activation of the fibrinolytic system is more common in out-of-hospital cardiac arrest patients with an initial cerebral tissue oxygenation value of 50% or less during resuscitation and is linked to increased levels of t-PA rather than involvement of protein C.


Asunto(s)
Encéfalo/metabolismo , Fibrinólisis/fisiología , Paro Cardíaco Extrahospitalario/metabolismo , Paro Cardíaco Extrahospitalario/terapia , Consumo de Oxígeno/fisiología , Resucitación/tendencias , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Paro Cardíaco Extrahospitalario/complicaciones , Estudios Prospectivos
10.
Anesth Analg ; 121(5): 1274-80, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26484461

RESUMEN

BACKGROUND: The medium care unit (MCU) or "stepdown" unit is an increasingly important, but understudied care environment. With an aging population and more patients with complex multiple diseases, many patients often require a higher level of inpatient care even when full intensive care is not indicated. However, the nurse-to-patient ratio required on a MCU is neither well defined nor clear whether this ratio should be adjusted per shift. The Nursing Activities Score (NAS) is an effective instrument for measuring nursing workload in the intensive care unit (ICU) but has not been used in an MCU. The aim of this study was to measure the nursing workload per 8-hour shift on an MCU using the NAS and compare it with the NAS from an ICU in the same hospital. We also compared the NAS between groups of patients with different admission sources. METHODS: The NAS was prospectively measured per patient per shift for 2 months in a 9-bed tertiary referral university hospital MCU and during a similar period in an ICU in the same hospital. RESULTS: The mean NAS per patient did not differ between day (7:30 AM to 4:00 PM) and evening (3:00 PM to 11:30 PM) shifts, but the NAS was significantly lower during the night shift (11:00 PM to 8:00 AM) than during the day (P < 0.0001) and evening (P < 0.0001) shifts. The mean NASs in the ICU for day and night shifts were significantly lower than the scores in the MCU (P = 0.0056 and P < 0.0001, respectively), but NAS during the evening shift did not differ between the ICU and the MCU. The mean NAS for patients admitted to the MCU from the accident and emergency department was significantly higher than for those admitted from the ICU (P = 0.002), recovery (P = 0.002), and general ward (P < 0.0001). Patients on the MCU had a NAS comparable with that of ICU patients. CONCLUSIONS: In our university hospital, NAS was higher during the day and evening hours and lower at night. We also found that patients from accident and emergency had a higher NAS than those admitted to the MCU from other locations. NAS in the MCU was not lower than the NAS in the ICU. Because of its ability to discriminate between day and evening workloads and between patients from different sources, the NAS may assist MCU managers in assessing staffing needs.


Asunto(s)
Unidades de Cuidados Intensivos/tendencias , Rol de la Enfermera , Atención de Enfermería/tendencias , Unidades de Autocuidado/tendencias , Carga de Trabajo , Adulto , Anciano , Estudios de Cohortes , Femenino , Hospitales Universitarios/tendencias , Humanos , Tiempo de Internación/tendencias , Masculino , Persona de Mediana Edad , Estudios Prospectivos
11.
Mol Cell Proteomics ; 12(5): 1350-62, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23399551

RESUMEN

The accumulation of cellular damage, including DNA damage, is hypothesized to contribute to aging-related neurodegenerative changes. DNA excision repair cross-complementing group 1 (Ercc1) knock-out mice represent an accepted model of neuronal aging, showing gradual neurodegenerative changes, including loss of synaptic contacts and cell body shrinkage. Here, we used the Purkinje cell-specific Ercc1 DNA-repair knock-out mouse model to study aging in the mouse cerebellum. We performed an in-depth quantitative proteomics analysis, using stable isotope dimethyl labeling, to decipher changes in protein expression between the early (8 weeks), intermediate (16 weeks), and late (26 weeks) stages of the phenotypically aging Ercc1 knock-out and healthy littermate control mice. The expression of over 5,200 proteins from the cerebellum was compared quantitatively, whereby 79 proteins (i.e. 1.5%) were found to be substantially regulated during aging. Nearly all of these molecular markers of the early aging onset belonged to a strongly interconnected network involved in excitatory synaptic signaling. Using immunohistological staining, we obtained temporal and spatial profiles of these markers confirming not only the proteomics data but in addition revealed how the change in protein expression correlates to synaptic changes in the cerebellum. In summary, this study provides a highly comprehensive spatial and temporal view of the dynamic changes in the cerebellum and Purkinje cell signaling in particular, indicating that synapse signaling is one of the first processes to be affected in this premature aging model, leading to neuron morphological changes, neuron degeneration, inflammation, and ultimately behavior disorders.


Asunto(s)
Envejecimiento/metabolismo , Cerebelo/metabolismo , Degeneración Nerviosa/metabolismo , Animales , Forma de la Célula , Cerebelo/patología , Reparación del ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Endonucleasas/deficiencia , Endonucleasas/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Proteoma/metabolismo , Células de Purkinje/fisiología
12.
BMC Anesthesiol ; 15: 48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25883532

RESUMEN

BACKGROUND: In spite of the introduction of mild therapeutic hypothermia (MTH), mortality rates remain high in patients with return of spontaneous circulation (ROSC) after cardiac arrest (CA). To date, no accurate and independent biomarker to predict survival in these patients exists. B-type natriuretic peptide (BNP) was found to provide both prognostic and diagnostic value in various cardiovascular diseases, including survival to hospital discharge in patients with ROSC. However, the biologically inactive counterpart of BNP, NT-proBNP, was found to be a more stable and accurate analyte. The current retrospective observational study investigates the value of NT-proBNP to predict 28-day mortality in post-CA patients treated with MTH, as well as the dynamics of NT-proBNP during MTH. METHODS: NT-proBNP levels were measured in post-CA patients cooled via cold intravenous saline infusion and water-circulating body wraps (Medi-Therm®, Gaymar). Plasma samples were obtained before cooling was started, at the start and end of the maintenance phase and at the end of rewarming. RESULTS: 250 patients, admitted between 2009 and 2013, had NT-proBNP levels measured on ICU admission and were included for the evaluation of NT-proBNP as a prognostic marker. In the 28 days following ICU admission, 114 patients died (46%). Non-survivors had significantly higher NT-proBNP (median 1448 ng/l, IQR 366-4623 vs median 567 ng/1, IQR 148-1899; P < 0.001) levels on ICU admission. Unadjusted odds ratios for 28-day mortality were 1.7 (95% CI 0.8-3.5), 1.6 (0.8-3.3) and 3.6 (1.7-7.5) for increasing quartiles of NT-proBNP as compared to the lowest quartile. Adjusted odds ratios were 1.1 (95% CI 0.5-2.5), 1.1 (0.5-2.5) and 1.6 (0.7-3.8), respectively. A cut-off value of 834 ng/l achieved a sensitivity of 58% and a specificity of 58% to predict 28-day mortality. Of 113 patients, NT-proBNP values of each MTH phase were available and grouped in decreased or increased levels in time. Both decreases and increases of NT-proBNP values were observed during the MTH phases, but presence of either was not associated with outcome. CONCLUSIONS: High NT-proBNP plasma concentrations on ICU admission are associated with high 28-day mortality in post-CA patients treated with MTH in a univariate analysis, but not in a multivariate analysis. Increases or decreases of NT-proBNP levels during MTH appear unrelated to 28 day mortality.


Asunto(s)
Reanimación Cardiopulmonar/mortalidad , Paro Cardíaco/terapia , Hipotermia Inducida/mortalidad , Péptido Natriurético Encefálico/metabolismo , Fragmentos de Péptidos/metabolismo , Anciano , Cuidados Críticos , Métodos Epidemiológicos , Femenino , Paro Cardíaco/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
13.
Pflugers Arch ; 466(6): 1079-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24573174

RESUMEN

Cardiac remodeling in response to a myocardial infarction or chronic pressure-overload is an independent risk factor for the development of heart failure. In contrast, cardiac remodeling produced by regular physical exercise is associated with a decreased risk for heart failure. There is evidence that exercise training has a beneficial effect on disease progression and survival in patients with cardiac remodeling and dysfunction, but concern has also been expressed that exercise training may aggravate pathological remodeling and dysfunction. Here we present studies from our laboratory into the effects of exercise training on pathological cardiac remodeling and dysfunction in mice. The results indicate that even in the presence of a large infarct, exercise training exerts beneficial effects on the heart. These effects were mimicked in part by endothelial nitric oxide synthase (eNOS) overexpression and abrogated by eNOS deficiency, demonstrating the importance of nitric oxide signaling in mediating the cardiac effects of exercise. Exercise prior to a myocardial infarction was also cardioprotective. In contrast, exercise tended to aggravate pathological cardiac remodeling and dysfunction in the setting of pressure-overload produced by an aortic stenosis. These observations emphasize the critical importance of the underlying pathological stimulus for cardiac hypertrophy and remodeling, in determining the effects of exercise training. Future studies are needed to define the influence of exercise type, intensity and duration in different models and severities of pathological cardiac remodeling. Together such studies will aid in optimizing the therapy of exercise training in the setting of cardiovascular disease.


Asunto(s)
Terapia por Ejercicio , Insuficiencia Cardíaca/fisiopatología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Esfuerzo Físico , Remodelación Ventricular , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Humanos
14.
Crit Care ; 18(4): 460, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25185110

RESUMEN

This narrative review summarizes the role of vitamin C in mitigating oxidative injury-induced microcirculatory impairment and associated organ failure in ischemia/reperfusion or sepsis. Preclinical studies show that high-dose vitamin C can prevent or restore microcirculatory flow impairment by inhibiting activation of nicotinamide adenine dinucleotide phosphate-oxidase and inducible nitric oxide synthase, augmenting tetrahydrobiopterin, preventing uncoupling of oxidative phosphorylation, and decreasing the formation of superoxide and peroxynitrite, and by directly scavenging superoxide. Vitamin C can additionally restore vascular responsiveness to vasoconstrictors, preserve endothelial barrier by maintaining cyclic guanylate phosphatase and occludin phosphorylation and preventing apoptosis. Finally, high-dose vitamin C can augment antibacterial defense. These protective effects against overwhelming oxidative stress due to ischemia/reperfusion, sepsis or burn seems to mitigate organ injury and dysfunction, and promote recovery after cardiac revascularization and in critically ill patients, in the latter partially in combination with other antioxidants. Of note, several questions remain to be solved, including optimal dose, timing and combination of vitamin C with other antioxidants. The combination obviously offers a synergistic effect and seems reasonable during sustained critical illness. High-dose vitamin C, however, provides a cheap, strong and multifaceted antioxidant, especially robust for resuscitation of the circulation. Vitamin C given as early as possible after the injurious event, or before if feasible, seems most effective. The latter could be considered at the start of cardiac surgery, organ transplant or major gastrointestinal surgery. Preoperative supplementation should consider the inhibiting effect of vitamin C on ischemic preconditioning. In critically ill patients, future research should focus on the use of short-term high-dose intravenous vitamin C as a resuscitation drug, to intervene as early as possible in the oxidant cascade in order to optimize macrocirculation and microcirculation and limit cellular injury.


Asunto(s)
Antioxidantes/fisiología , Ácido Ascórbico/fisiología , Estrés Oxidativo/fisiología , Daño por Reperfusión/fisiopatología , Sepsis/fisiopatología , Vitaminas/fisiología , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/farmacocinética , Permeabilidad Capilar , Cuidados Críticos , Endotelio Vascular/fisiopatología , Corazón/fisiopatología , Humanos , Microcirculación , Insuficiencia Multiorgánica/fisiopatología , Especies Reactivas de Oxígeno , Vitaminas/administración & dosificación , Vitaminas/farmacocinética
15.
PLoS Genet ; 7(12): e1002405, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22174697

RESUMEN

Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS). TCR-deficient Csa(-/-) and Csb(-/-) CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER-deficient Xpa(-/-) and Xpc(-/-) XP mice, but also occurred in Xpd(XPCS) mice carrying a point mutation (G602D) in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR-deficient mice are compatible with focal dysmyelination in CS patients. Both TCR-deficient and NER-deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa(-/-), Csb(-/-)) or highly sporadic (Xpa(-/-), Xpc(-/-)) neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR-deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa(-/-) and Csb(-/-) TCR-deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron-specific inactivation of NER in TCR-deficient mice represents a valuable model for the role of NER in neuronal maintenance and survival.


Asunto(s)
Reparación del ADN/genética , Degeneración Nerviosa/genética , Neuronas/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Síndrome de Cockayne/genética , Trastornos por Deficiencias en la Reparación del ADN , Modelos Animales de Enfermedad , Humanos , Leucoencefalopatías/genética , Ratones , Vaina de Mielina/genética , Vaina de Mielina/patología , Degeneración Nerviosa/metabolismo , Neuronas/patología , Mutación Puntual , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
16.
Crit Care ; 17(1): R31, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23425514

RESUMEN

INTRODUCTION: Mild therapeutic hypothermia (MTH) is a worldwide used therapy to improve neurological outcome in patients successfully resuscitated after cardiac arrest (CA). Preclinical data suggest that timing and speed of induction are related to reduction of secondary brain damage and improved outcome. METHODS: Aiming at a rapid induction and stable maintenance phase, MTH induced via continuous peritoneal lavage (PL) using the Velomedix Inc. automated PL system was evaluated and compared to historical controls in which hypothermia was achieved using cooled saline intravenous infusions and cooled blankets. RESULTS: In 16 PL patients, time to reach the core target temperature of 32.5°C was 30 minutes (interquartile range (IQR): 19 to 60), which was significantly faster compare to 150 minutes (IQR: 112 to 240) in controls. The median rate of cooling during the induction phase in the PL group of 4.1°C/h (IQR: 2.2 to 8.2) was significantly faster compared to 0.9°C/h (IQR: 0.5 to 1.3) in controls. During the 24-hour maintenance phase mean core temperature in the PL patients was 32.38 ± 0.18°C (range: 32.03 to 32.69°C) and in control patients 32.46 ± 0.48°C (range: 31.20 to 33.63°C), indicating more steady temperature control in the PL group compared to controls. Furthermore, the coefficient of variation (VC) for temperature during the maintenance phase was lower in the PL group (VC: 0.5%) compared to the control group (VC: 1.5%). In contrast to 23% of the control patients, none of the PL patients showed an overshoot of hypothermia below 31°C during the maintenance phase. Survival and neurological outcome was not different between the two groups. Neither shivering nor complications related to insertion or use of the PL method were observed. CONCLUSIONS: Using PL in post-CA patients results in a rapidly reached target temperature and a very precise maintenance, unprecedented in clinical studies evaluating MTH techniques. This opens the way to investigate the effects on neurological outcome and survival of ultra-rapid cooling compared to standard cooling in controlled trials in various patient groups. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01016236


Asunto(s)
Paro Cardíaco/terapia , Hipotermia Inducida/métodos , Seguridad del Paciente , Lavado Peritoneal/métodos , Resucitación/métodos , Anciano , Femenino , Paro Cardíaco/diagnóstico , Humanos , Hipotermia Inducida/normas , Masculino , Persona de Mediana Edad , Seguridad del Paciente/normas , Lavado Peritoneal/normas , Estudios Prospectivos , Resucitación/normas , Factores de Tiempo , Resultado del Tratamiento
17.
J Neurosci ; 31(35): 12543-53, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880916

RESUMEN

Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.


Asunto(s)
Envejecimiento , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Trastornos por Deficiencias en la Reparación del ADN/complicaciones , Degeneración Nerviosa/etiología , Degeneración Nerviosa/genética , Factor de Transcripción Activador 3/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Caspasa 3/metabolismo , Trastornos del Conocimiento/metabolismo , Trastornos por Deficiencias en la Reparación del ADN/genética , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Estimulación Eléctrica , Endonucleasas/deficiencia , Miedo/psicología , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/metabolismo , Plasticidad Neuronal/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
J Proteome Res ; 11(3): 1855-67, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22289077

RESUMEN

Cognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of hippocampal synaptic proteins that potentially underlie these age-dependent deficits. Aged Ercc1 mutant mice show normal gross hippocampal dendritic morphology and synapse numbers, and Ercc1 mutant hippocampal neurons displayed normal outgrowth and synapse formation in vitro. However, using isobaric tag for relative and absolute quantification (iTRAQ) of hippocampal synaptic proteins at two different ages, postnatal days 28 and 112, we observed a progressive decrease in synaptic ionotropic glutamate receptor levels and increased levels of G-proteins and of cell adhesion proteins. These together may cause long-term changes in synapse function. In addition, we observed a downregulation of mitochondrial proteins and concomitant upregulation of Na,K-ATPase subunits, which might compensate for reduced mitochondrial activity. Thus, our findings show that under conditions of apparent intact neuronal connectivity, levels of specific synaptic proteins are already affected during the early stages of DNA damage-induced aging, which might contribute to age-dependent cognitive decline.


Asunto(s)
Envejecimiento/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteoma/metabolismo , Sinapsis/metabolismo , Envejecimiento/genética , Animales , Células Cultivadas , Trastornos del Conocimiento/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Regulación de la Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/fisiología , Proteoma/genética , Sinapsis/patología
19.
Blood ; 115(26): 5329-37, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20385789

RESUMEN

Pompe disease (acid alpha-glucosidase deficiency) is a lysosomal glycogen storage disorder characterized in its most severe early-onset form by rapidly progressive muscle weakness and mortality within the first year of life due to cardiac and respiratory failure. Enzyme replacement therapy prolongs the life of affected infants and supports the condition of older children and adults but entails lifelong treatment and can be counteracted by immune responses to the recombinant enzyme. We have explored the potential of lentiviral vector-mediated expression of human acid alpha-glucosidase in hematopoietic stem cells (HSCs) in a Pompe mouse model. After mild conditioning, transplantation of genetically engineered HSCs resulted in stable chimerism of approximately 35% hematopoietic cells that overexpress acid alpha-glucosidase and in major clearance of glycogen in heart, diaphragm, spleen, and liver. Cardiac remodeling was reversed, and respiratory function, skeletal muscle strength, and motor performance improved. Overexpression of acid alpha-glucosidase did not affect overall hematopoietic cell function and led to immune tolerance as shown by challenge with the human recombinant protein. On the basis of the prominent and sustained therapeutic efficacy without adverse events in mice we conclude that ex vivo HSC gene therapy is a treatment option worthwhile to pursue.


Asunto(s)
Terapia Genética/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , alfa-Glucosidasas/genética , Animales , Células Cultivadas , Quimerismo , Expresión Génica , Vectores Genéticos/genética , Glucógeno/metabolismo , Trasplante de Células Madre Hematopoyéticas , Sistema Hematopoyético/metabolismo , Humanos , Ratones , Ratones Noqueados , Actividad Motora , Transducción Genética
20.
J Mol Cell Cardiol ; 50(3): 487-99, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21156182

RESUMEN

Previously we showed that left ventricular (LV) responsiveness to exercise-induced increases in noradrenaline was blunted in pigs with a recent myocardial infarction (MI) [van der Velden et al. Circ Res. 2004], consistent with perturbed ß-adrenergic receptor (ß-AR) signaling. Here we tested the hypothesis that abnormalities at the myofilament level underlie impaired LV responsiveness to catecholamines in MI. Myofilament function and protein composition were studied in remote LV biopsies taken at baseline and during dobutamine stimulation 3 weeks after MI or sham. Single permeabilized cardiomyocytes demonstrated reduced maximal force (F(max)) and higher Ca(2+)-sensitivity in MI compared to sham. F(max) did not change during dobutamine infusion in sham, but markedly increased in MI. Moreover, the dobutamine-induced decrease in Ca(2+)-sensitivity was significantly larger in MI than sham. Baseline phosphorylation assessed by phosphostaining of ß-AR target proteins myosin binding protein C (cMyBP-C) and troponin I (cTnI) in MI and sham was the same. However, the dobutamine-induced increase in overall cTnI phosphorylation and cTnI phosphorylation at protein kinase A (PKA)-sites (Ser23/24) was less in MI compared to sham. In contrast, the dobutamine-induced phosphorylation of cMyBP-C at Ser282 was preserved in MI, and coincided with increased autophosphorylation (at Thr282) of the cytosolic Ca(2+)-dependent calmodulin kinase II (CaMKII-δC). In conclusion, in post-infarct remodeled myocardium myofilament responsiveness to dobutamine is significantly enhanced despite the lower increase in PKA-mediated phosphorylation of cTnI. The increased myofilament responsiveness in MI may depend on the preserved cMyBP-C phosphorylation possibly resulting from increased CaMKII-δC activity and may help to maintain proper diastolic performance during exercise.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Remodelación Ventricular/efectos de los fármacos , Citoesqueleto de Actina/patología , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Portadoras/metabolismo , Catecolaminas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Dobutamina/farmacología , Femenino , Ventrículos Cardíacos/metabolismo , Masculino , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Fosforilación/fisiología , Porcinos , Troponina I/metabolismo , Remodelación Ventricular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA