RESUMEN
The choriogenin H - EGFP transgenic medaka (Oryzias melastigma) has been used to test estrogenic substances and quantify estrogenic activity into 17ß-estradiol (E2) equivalency (EEQ). The method uses 8 eleutheroembryos in 2 ml solution per well and 3 wells per treatment in 24-well plates at 26 ± 1 °C for 24 ± 2 h, with subsequent measurements of induced GFP signal intensity. EEQ measurements are calculated using a E2 probit regression model with a coefficient of determination (R2) > 0.90. The selectivity was confirmed evaluating 27 known estrogenic and 5 known non-estrogenic compounds. Limit of quantitation (LOQ), recovery rate and bias were calculated to be 1 ng/ml EEQ, 104% and 4% respectively. Robustness analysis revealed exposure temperature is a sensitive parameter that should be kept at 26 ± 1 °C. The repeatability of intra- and inter-laboratories achieved CV < 30% for most tested food and cosmetics samples. The lot-lot stability was confirmed by the stable EEQ qualitative control (QC, 1 ng/mL E2) and calibration curve results. The stability of standard reagents, samples and sample extracts was also investigated. These data demonstrated this method to be an accurate indicator of estrogenic activity for both chemicals and extracts.
Asunto(s)
Animales Modificados Genéticamente/metabolismo , Proteínas del Huevo/análisis , Estradiol/química , Oryzias/metabolismo , Precursores de Proteínas/análisis , Animales , Animales Modificados Genéticamente/embriología , Técnicas Biosensibles , Extractos Celulares/química , Estradiol/metabolismo , Límite de Detección , Oryzias/embriología , Análisis de RegresiónRESUMEN
Dravet syndrome (DS) is a rare genetic encephalopathy that is characterized by severe seizures and highly resistant to commonly used antiepileptic drugs (AEDs). In 2020, FDA has approved fenfluramine (FFA) for treatment of seizures associated with DS. However, the clinically used FFA is a racemic mixture (i.e. (±)-FFA), that is substantially metabolized to norfenfluramine (norFFA), and it is presently not known whether the efficacy of FFA is due to a single enantiomer of FFA, or to both, and whether the norFFA enantiomers also contribute significantly. In this study, the antiepileptic activity of enantiomers of FFA (i.e. (+)-FFA and (-)-FFA) and norFFA (i.e. (+)-norFFA and (-)-norFFA) was explored using the zebrafish scn1Lab-/- mutant model of DS. To validate the experimental conditions used, we assessed the activity of various AEDs typically used in the fight against DS, including combination therapy. Overall, our results are highly consistent with the treatment algorithm proposed by the updated current practice in the clinical management of DS. Our results show that (+)-FFA, (-)-FFA and (+)-norFFA displayed significant antiepileptic effects in the preclinical model, and thus can be considered as compounds actively contributing to the clinical efficacy of FFA. In case of (-)-norFFA, the results were less conclusive. We also investigated the uptake kinetics of the enantiomers of FFA and norFFA in larval zebrafish heads. The data show that the total uptake of each compound increased in a time-dependent fashion. A somewhat similar uptake was observed for the (+)-norFFA and (-)-norFFA, implying that the levo/dextrotation of the structure did not dramatically affect the uptake. Significantly, when comparing (+)-FFA with the less lipophilic (+)-norFFA, the data clearly show that the nor-metabolite of FFA is taken up less than the parent compound.
Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsias Mioclónicas/tratamiento farmacológico , Fenfluramina/uso terapéutico , Norfenfluramina/uso terapéutico , Animales , Anticonvulsivantes/química , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacocinética , Epilepsias Mioclónicas/metabolismo , Fenfluramina/química , Fenfluramina/metabolismo , Fenfluramina/farmacocinética , Cabeza/fisiología , Norfenfluramina/química , Norfenfluramina/metabolismo , Norfenfluramina/farmacocinética , Estereoisomerismo , Pez CebraRESUMEN
In drug discovery, often animal models are used that mimic human diseases as closely as possible. These animal models can be used to address various scientific questions, such as testing and evaluation of new drugs, as well as understanding the pathogenesis of diseases. Currently, the most commonly used animal models in the field of fibrosis are rodents. Unfortunately, rodent models of fibrotic disease are costly and time-consuming to generate. In addition, present models are not very suitable for screening large compounds libraries. To overcome these limitations, there is a need for new in vivo models. Zebrafish has become an attractive animal model for preclinical studies. An expanding number of zebrafish models of human disease have been documented, for both acute and chronic diseases. A deeper understanding of the occurrence of fibrosis in zebrafish will contribute to the development of new and potentially improved animal models for drug discovery. These zebrafish models of fibrotic disease include, among others, cardiovascular disease models, liver disease models (categorized into Alcoholic Liver Diseases (ALD) and Non-Alcoholic Liver Disease (NALD)), and chronic pancreatitis models. In this review, we give a comprehensive overview of the usage of zebrafish models in fibrotic disease studies, highlighting their potential for high-throughput drug discovery and current technical challenges.
Asunto(s)
Modelos Animales de Enfermedad , Fibrosis/patología , Pez Cebra/fisiología , Animales , Fibrosis/genéticaRESUMEN
Coumarins are a well-known group of plant secondary metabolites with various pharmacological activities, including antiseizure activity. In the search for new antiseizure drugs (ASDs) to treat epilepsy, it is yet unclear which types of coumarins are particularly interesting as a systematic analysis has not been reported. The current study performed behavioral antiseizure activity screening of 18 different coumarin derivatives in the larval zebrafish pentylenetetrazole (PTZ) model using locomotor measurements. Activity was confirmed for seven compounds, which lowered seizure-like behavior as follows: oxypeucedanin 38%, oxypeucedanin hydrate 74%, notopterol 54%, nodakenetin 29%, hyuganin C 35%, daphnoretin 65%, and pimpinellin 60%. These coumarins, together with nodakenin, underwent further antiepileptiform analysis by local field potential recordings from the zebrafish opticum tectum (midbrain). All of them, except for nodakenetin, showed pronounced antiepileptiform activity, decreasing PTZ-induced elevation in power spectral density (PSD) by 83-89% for oxypeucedanin, oxypeucedanin hydrate, and notopterol, 77% for nodakenin, 26% for nodakenetin, 65% for hyuganin C, 88% for daphnoretin, and 81% for pimpinellin. These data demonstrate the potential of diverse coumarin scaffolds for ASD discovery. Finally, the structural differences between active and inactive coumarins were investigated in silico for oxypeucedanin hydrate and byacangelicin for their interaction with GABA-transaminase, a hypothetical target.
Asunto(s)
Anticonvulsivantes/farmacología , Cumarinas/farmacología , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Pez Cebra/fisiología , 4-Aminobutirato Transaminasa/efectos de los fármacos , Animales , Convulsivantes/farmacología , Mesencéfalo/fisiología , Pentilenotetrazol/farmacología , Extractos Vegetales/farmacología , Convulsiones/prevención & controlRESUMEN
Developmental and epileptic encephalopathies (DEEs) are complex conditions characterized primarily by seizures associated with neurodevelopmental and motor deficits. Recent evidence supports sigma-1 receptor modulation in both neuroprotection and antiseizure activity, suggesting that sigma-1 receptors may play a role in the pathogenesis of DEEs, and that targeting this receptor has the potential to positively impact both seizures and non-seizure outcomes in these disorders. Recent studies have demonstrated that the antiseizure medication fenfluramine, a serotonin-releasing drug that also acts as a positive modulator of sigma-1 receptors, reduces seizures and improves everyday executive functions (behavior, emotions, cognition) in patients with Dravet syndrome and Lennox-Gastaut syndrome. Here, we review the evidence for sigma-1 activity in reducing seizure frequency and promoting neuroprotection in the context of DEE pathophysiology and clinical presentation, using fenfluramine as a case example. Challenges and opportunities for future research include developing appropriate models for evaluating sigma-1 receptors in these syndromic epileptic conditions with multisystem involvement and complex clinical presentation.
Asunto(s)
Encefalopatías/metabolismo , Síndromes Epilépticos/metabolismo , Receptores sigma/metabolismo , Animales , Anticonvulsivantes/farmacología , Encefalopatías/tratamiento farmacológico , Síndromes Epilépticos/tratamiento farmacológico , Fenfluramina/farmacología , Humanos , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Receptor Sigma-1RESUMEN
OBJECTIVE: Adjunctive fenfluramine hydrochloride, classically described as acting pharmacologically through a serotonergic mechanism, has demonstrated a unique and robust clinical response profile with regard to its magnitude, consistency, and durability of effect on seizure activity in patients with pharmacoresistant Dravet syndrome. Recent findings also support long-term improvements in executive functions (behavior, emotion, cognition) in these patients. The observed clinical profile is inconsistent with serotonergic activity alone, as other serotonergic medications have not been demonstrated to have these clinical effects. This study investigated a potential role for σ1 receptor activity in complementing fenfluramine's serotonergic pharmacology. METHODS: Radioligand binding assays tested the affinity of fenfluramine for 47 receptors associated with seizures in the literature, including σ receptors. Cellular function assays tested fenfluramine and norfenfluramine (its major metabolite) activity at various receptors, including adrenergic, muscarinic, and serotonergic receptors. The σ1 receptor activity was assessed by the mouse vas deferens isometric twitch and by an assay of dissociation of the σ1 receptor from the endoplasmic reticulum stress protein binding immunoglobulin protein (BiP). In vivo mouse models assessed fenfluramine activity at σ1 receptors in ameliorating dizocilpine-induced learning deficits in spatial and nonspatial memory tasks, alone or in combination with the reference σ1 receptor agonist PRE-084. RESULTS: Fenfluramine and norfenfluramine bound ≥30% to ß2-adrenergic, muscarinic M1, serotonergic 5-HT1A, and σ receptors, as well as sodium channels, with a Ki between 266â¯nM (σ receptors) and 17.5⯵M (ß-adrenergic receptors). However, only σ1 receptor isometric twitch assays showed a positive functional response, with weak stimulation by fenfluramine and inhibition by norfenfluramine. Fenfluramine, but not the 5-HT2C agonist lorcaserin, showed a positive modulation of the PRE-084-induced dissociation of σ1 protein from BiP. Fenfluramine also showed dose-dependent antiamnesic effects against dizocilpine-induced learning deficits in spontaneous alternation and passive avoidance responses, which are models of σ1 activation. Moreover, low doses of fenfluramine synergistically potentiated the low-dose effect of PRE-084, confirming a positive modulatory effect at the σ1 receptor. Finally, all in vivo effects were blocked by the σ1 receptor antagonist NE-100. SIGNIFICANCE: Fenfluramine demonstrated modulatory activity at σ1 receptors in vitro and in vivo in addition to its known serotonergic activity. These studies identify a possible new σ1 receptor mechanism underpinning fenfluramine's central nervous system effects, which may contribute to its antiseizure activity in Dravet syndrome and positive effects observed on executive functions in clinical studies.
Asunto(s)
Fenfluramina/metabolismo , Fenfluramina/farmacología , Receptores sigma/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Animales , Benzazepinas/metabolismo , Benzazepinas/farmacología , Células CHO , Cricetinae , Cricetulus , Fenfluramina/uso terapéutico , Células HEK293 , Humanos , Masculino , Ratones , Morfolinas/metabolismo , Morfolinas/farmacología , Unión Proteica/fisiología , Ensayo de Unión Radioligante/métodos , Ratas , Receptores sigma/agonistas , Receptores sigma/antagonistas & inhibidores , Receptor Sigma-1RESUMEN
There is a high need for the development of new and improved antiseizure drugs (ASDs) to treat epilepsy. Despite the potential of marine natural products (MNPs), the EU marine biodiscovery consortium PharmaSea has made the only effort to date to perform ASD discovery based on large-scale screening of MNPs. To this end, the embryonic zebrafish photomotor response assay and the larval zebrafish pentylenetetrazole (PTZ) model were used to screen MNP extracts for neuroactivity and antiseizure activity, respectively. Here we report the identification of the two known isoquinoline alkaloids TMC-120A and TMC-120B as novel antiseizure compounds, which were isolated by bioactivity-guided purification from the marine-derived fungus Aspergillus insuetus. TMC-120A and TMC-120B were observed to significantly lower PTZ-induced seizures and epileptiform brain activity in the larval zebrafish PTZ seizure model. In addition, their structural analogues TMC-120C, penicisochroman G, and ustusorane B were isolated and also significantly lowered PTZ-induced seizures. Finally, TMC-120A and TMC-120B were investigated in a mouse model of drug-resistant focal seizures. Compound treatment significantly shortened the seizure duration, thereby confirming their antiseizure activity. These data underscore the possibility to translate findings in zebrafish to mice in the field of epilepsy and the potential of the marine environment for ASD discovery.
Asunto(s)
Alcaloides/farmacología , Benzofuranos/farmacología , Isoquinolinas/farmacología , Convulsiones/tratamiento farmacológico , Pez Cebra/metabolismo , Animales , Anticonvulsivantes/farmacología , Aspergillus/metabolismo , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Epilepsia/tratamiento farmacológico , Larva/metabolismo , Masculino , Ratones , Mar del NorteRESUMEN
Tuberous sclerosis complex (TSC) is a rare, genetic disease caused by loss-of-function mutations in either TSC1 or TSC2. Patients with TSC are neurologically characterized by the presence of abnormal brain structure, intractable epilepsy and TSC-associated neuropsychiatric disorders. Given the lack of effective long-term treatments for TSC, there is a need to gain greater insight into TSC-related pathophysiology and to identify and develop new treatments. In this work we show that homozygous tsc2-/- mutant zebrafish larvae, but not tsc2+/- and WT larvae, display enlarged brains, reduced locomotor behavior and epileptiform discharges at 7dpf. In addition, we pharmacologically validated the TSC model by demonstrating the dramatic rescue effect of pericardially injected rapamycin, a well-known mTOR inhibitor, on selected behavioral read-outs and at the molecular level. By means of trancriptome profiling we also acquired more insight into the neuropathology of TSC, and as a result were able to highlight possible new treatment targets. The gene expression profiles of WT and tsc2+/- larvae revealed 117 differentially expressed genes (DEGs), while between WT and tsc2-/- larvae and tsc2+/- and tsc2-/- larvae there were 1414 and 1079 DEGs, respectively. Pathway enrichment analysis from the WT and tsc2-/- DEGs, identified 14 enriched pathways from the up-regulated genes and 6 enriched pathways from the down-regulated genes. Moreover, genes related to inflammation and immune response were up-regulated in the heads of tsc2-/- larvae, in line with the findings in human brain tissue where inflammatory and immune responses appear to be major hallmarks of TSC. Taken together, our phenotypic, transcriptomic and pharmacological analysis identified the tsc2-/- zebrafish as a preclinical model that mirrors well aspects of the human condition and delineated relevant TSC-related biological pathways. The model may be of value for future TSC-related drug discovery and development programs.
Asunto(s)
Encéfalo/anomalías , Péptidos y Proteínas de Señalización Intracelular/genética , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma , Esclerosis Tuberosa/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patología , Expresión Génica , Inflamación/metabolismo , Inflamación/patología , Larva , Actividad Motora/fisiología , Tamaño de los Órganos , Fenotipo , Análisis de Supervivencia , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Proteínas de Pez Cebra/metabolismoRESUMEN
Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures.
Asunto(s)
Proteínas de Unión al ADN/genética , Epilepsias Mioclónicas/genética , Animales , Niño , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/patología , Estudios de Cohortes , Epilepsias Mioclónicas/patología , Exoma , Femenino , Técnicas de Silenciamiento del Gen , Haploinsuficiencia , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Larva/genética , Masculino , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Convulsiones Febriles/genética , Convulsiones Febriles/patología , Adulto Joven , Pez CebraRESUMEN
OBJECTIVES: To investigate the possibility of using Evans blue (EB) as a novel diagnostic tool to detect bladder tumours with white-light (WL) cystoscopy, in this preclinical study we examine the biodistribution of EB in the different layers (urothelium, submucosa, muscle) of a normal rat bladder and a rat bladder bearing a malignant urothelium composed of syngeneic AY-27 tumour cells. MATERIALS AND METHODS: EB was instilled into both normal as well as tumour-bearing rat bladders. After instillation, bladders were removed and snap frozen in liquid nitrogen. The distribution of EB in the different layers was quantified using fluorescence microscopy. To gain more insight into the mechanism underlying the selective accumulation of EB in tumour tissue, bladder sections were prepared for ultrastructural investigations by means of transmission electron microscopy (TEM). In addition, we also examined the expression of E-cadherin, claudin-1 and desmoglein-1 by immunohistochemistry to study the integrity of the bladder wall, as these molecules are key constituents of adherens junctions, tight junctions and desmosomes, respectively. RESULTS: In most cases, the accumulation of EB in malignant bladders was substantially higher than in healthy bladders, at least when 1 mm EB instillations were used. In case of a 1 mm EB instillation for 2 h, the EB-associated fluorescence in malignant urothelial tissue was 55-times higher than the fluorescence found in normal urothelium. Ultrastructurally, malignant tissue displayed wider intercellular spaces and a decreased number of cell junction components compared with normal tissue, pointing to defects in the urothelial barrier. There were no differences in the expression of E-cadherin, whereas desmoglein-1 staining was stronger in the membranes of healthy bladder urothelium compared with tumour tissue. Claudin-1 expression was negative in all samples tested. CONCLUSION: EB is selectively taken up by tumour tissue after intravesical instillations in rats bearing bladder tumours. The lower expression of desmoglein-1 in tumour samples, together with the reduced presence of desmosomes seen with TEM, likely imply that desmosomes play an important role in the ultrastructural differences between healthy rat urothelium and tumour tissue, and secondary to that, to the differential uptake of EB in both tissues. We consider that our findings could be useful for future clinical developments in the field of diagnostics for bladder cancer.
Asunto(s)
Cistoscopía/métodos , Azul de Evans/farmacocinética , Neoplasias de la Vejiga Urinaria/patología , Vejiga Urinaria/patología , Animales , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/farmacocinética , Ratas , Distribución Tisular , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/metabolismoRESUMEN
Treatment-resistant seizures affect about a third of patients suffering from epilepsy. To fulfill the need for new medications targeting treatment-resistant seizures, a number of rodent models offer the opportunity to assess a variety of potential treatment approaches. The use of such models, however, has proven to be time-consuming and labor-intensive. In this study, we performed pharmacological characterization of the allylglycine (AG) seizure model, a simple in vivo model for which we demonstrated a high level of treatment resistance. (d,l)-Allylglycine inhibits glutamic acid decarboxylase (GAD) - the key enzyme in γ-aminobutyric acid (GABA) biosynthesis - leading to GABA depletion, seizures, and neuronal damage. We performed a side-by-side comparison of mouse and zebrafish acute AG treatments including biochemical, electrographic, and behavioral assessments. Interestingly, seizure progression rate and GABA depletion kinetics were comparable in both species. Five mechanistically diverse antiepileptic drugs (AEDs) were used. Three out of the five AEDs (levetiracetam, phenytoin, and topiramate) showed only a limited protective effect (mainly mortality delay) at doses close to the TD50 (dose inducing motor impairment in 50% of animals) in mice. The two remaining AEDs (diazepam and sodium valproate) displayed protective activity against AG-induced seizures. Experiments performed in zebrafish larvae revealed behavioral AED activity profiles highly analogous to those obtained in mice. Having demonstrated cross-species similarities and limited efficacy of tested AEDs, we propose the use of AG in zebrafish as a convenient and high-throughput model of treatment-resistant seizures.
Asunto(s)
Alilglicina , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Convulsiones/tratamiento farmacológico , Animales , Diazepam/uso terapéutico , Fructosa/análogos & derivados , Fructosa/uso terapéutico , Levetiracetam , Masculino , Ratones , Fenitoína/uso terapéutico , Piracetam/análogos & derivados , Piracetam/uso terapéutico , Convulsiones/inducido químicamente , Topiramato , Resultado del Tratamiento , Ácido Valproico/uso terapéutico , Pez CebraRESUMEN
BACKGROUND: Wilson disease (WD) is caused by accumulation of excess copper (Cu) due to a mutation in the gene encoding the liver Cu transporter ATP7B, and is characterized by acute liver failure or cirrhosis and neuronal cell death. We investigated the effect of OSIP108, a plant derived decapeptide that prevents Cu-induced apoptosis in yeast and human cells, on Cu-induced toxicity in various mammalian in vitro models relevant for WD and in a Cu-toxicity zebrafish larvae model applicable to WD. METHODS: The effect of OSIP108 was evaluated on viability of various cell lines in the presence of excess Cu, on liver morphology of a Cu-treated zebrafish larvae strain that expresses a fluorescent reporter in hepatocytes, and on oxidative stress levels in wild type AB zebrafish larvae. RESULTS: OSIP108 increased not only viability of Cu-treated CHO cells transgenically expressing ATP7B and the common WD-causing mutant ATP7B(H1069Q), but also viability of Cu-treated human glioblastoma U87 cells. Aberrancies in liver morphology of Cu-treated zebrafish larvae were observed, which were further confirmed as Cu-induced hepatotoxicity by liver histology. Injections of OSIP108 into Cu-treated zebrafish larvae significantly increased the amount of larvae with normal liver morphology and decreased Cu-induced production of reactive oxygen species. CONCLUSIONS: OSIP108 prevents Cu-induced toxicity in in vitro models and in a Cu-toxicity zebrafish larvae model applicable to WD. GENERAL SIGNIFICANCE: All the above data indicate the potential of OSIP108 as a drug lead for further development as a novel WD treatment.
Asunto(s)
Proteínas de Arabidopsis/farmacología , Cobre/toxicidad , Degeneración Hepatolenticular/tratamiento farmacológico , Oligopéptidos/farmacología , Adenosina Trifosfatasas/genética , Animales , Células CHO , Proteínas de Transporte de Catión/genética , Línea Celular Tumoral , ATPasas Transportadoras de Cobre , Cricetulus , Glioblastoma , Humanos , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pez CebraRESUMEN
Two new photosensitizers based on the BODIPY scaffold have been synthesized, of which one bears an NLS peptide, which is linked to the BODIPY's core using the copper catalysed azide-alkyne click reaction. The phototoxicities of these BODIPY based photosensitizers have been determined, as well as their dark toxicities. Although the conjugation of a single NLS peptide to the BODIPY did not lead to any observable nuclear localization, the photosensitizer did exhibit a superior photoxicity. Cellular co-localization experiments revealed a localization of both dyes in the lysosomes, as well as a partial localization within the ER (for the peptide-bearing BODIPY).
Asunto(s)
Compuestos de Boro/química , Señales de Localización Nuclear/química , Fármacos Fotosensibilizantes/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Microscopía Fluorescente , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/toxicidad , Neoplasias de la Vejiga Urinaria/tratamiento farmacológicoRESUMEN
It is estimated that 30-80% of solid tumor mass represents necrotic tissue that consists out of a significant number of dead and dying cells. The fact that these necrotic zones are restricted to dysplastic and malignant tissue and are rarely present in normal tissue makes necrosis an interesting target both for cancer diagnosis and therapy. In this study, the avidity of hypericin, [(123) I]iodohypericin and [(131) I]iodohypericin to tumor necrosis was explored for both diagnosis and therapy of experimental malignancies. The intratumoral distribution in RIF-1 tumors was investigated by means of fluorescence microscopy (hypericin) and autoradiography ([(123) I]iodohypericin). Results show high uptake of the tracers in necrosis at 24 hr, lasting for up to 72 hr p.i. Ratios of activity of [(123) I]iodohypericin in necrotic tissue over viable tumor reached up to 19.63 ± 4.66, correlating with 9.20% ID/g in necrosis. Nude mice bearing RIF-1 tumors that received three injections of 300 µCi over a 3-week treatment period showed stabilization in tumor growth for 5 days, as measured by caliper and micro-positron emission tomography using [(18) F]fluorodeoxyglucose. Based on these results, we suggest the potentials of radiolabeled hypericin (1) in diagnostic aspects including prognosis or staging assessment of bulky necrotic cancers, monitoring of treatments and therapeutic follow-up; and (2) in cancer treatment based on tumor necrosis. In conclusion, we showed that hypericin radiolabeled with iodine is a necrosis avid tracer that can be used both as a tumor diagnostic and therapeutic.
Asunto(s)
Fibrosarcoma/diagnóstico , Fibrosarcoma/radioterapia , Neoplasias Inducidas por Radiación/diagnóstico , Neoplasias Inducidas por Radiación/radioterapia , Perileno/análogos & derivados , Animales , Antracenos , Autorradiografía , Femenino , Fibrosarcoma/diagnóstico por imagen , Fibrosarcoma/patología , Fluorodesoxiglucosa F18 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Fluorescente , Necrosis/diagnóstico , Necrosis/diagnóstico por imagen , Neoplasias Inducidas por Radiación/diagnóstico por imagen , Neoplasias Inducidas por Radiación/patología , Perileno/análisis , Perileno/metabolismo , Perileno/uso terapéutico , Pronóstico , Cintigrafía , Distribución AleatoriaRESUMEN
OBJECTIVE: To develop a diagnostic method relying on the preferential accumulation of a dye in non-muscle-invasive bladder cancer (NMIBC) that is visible in conjunction with white-light cystoscopy (WLC). MATERIALS AND METHODS: We investigated in detail the permeation of Evans blue in urothelial cell carcinoma (UCC) spheroids prepared from T24, J82 and RT-112 human cell lines and spheroids composed of normal human urothelial (NHU) cells. To gain more insight into the differential accumulation, all spheroids were investigated ultrastructurally using transmission electron microscopy (TEM). RESULTS: We found that, after exposure to Evans blue for 2 h, UCC spheroids accumulated dramatically more dye than spheroids composed of NHU cells. Using TEM it was found that the malignant spheroids contain similar ultrastructural characteristics, i.e. a wide intercellular space and a decreased number of desmosome-like cell attachments, to those from clinical samples of non-papillary carcinoma in situ of the bladder. CONCLUSION: We believe the present findings could be important for future developments in clinical diagnostics for early bladder cancer detection, staging and grading involving WLC.
Asunto(s)
Carcinoma de Células Transicionales/diagnóstico , Colorantes , Cistoscopía/métodos , Detección Precoz del Cáncer/métodos , Azul de Evans , Neoplasias de la Vejiga Urinaria/diagnóstico , Carcinoma de Células Transicionales/ultraestructura , Línea Celular Tumoral , Humanos , Luz , Microscopía Electrónica de Transmisión , Esferoides Celulares/ultraestructura , Neoplasias de la Vejiga Urinaria/ultraestructura , Urotelio/ultraestructuraRESUMEN
Turmeric, obtained from the rhizomes of Curcuma longa, is used in South Asia as a traditional medicine for the treatment of epilepsy. To date, in vivo studies on the anticonvulsant activity of turmeric have focused on its principal curcuminoid, curcumin. However, poor absorption and rapid metabolism have limited the therapeutic application of curcumin in humans. To explore the therapeutic potential of turmeric for epilepsy further, we analyzed its anticonvulsant activity in a larval zebrafish seizure assay. Initial experiments revealed that the anticonvulsant activity of turmeric in zebrafish larvae cannot be explained solely by the effects of curcumin. Zebrafish bioassay-guided fractionation of turmeric identified bisabolene sesquiterpenoids as additional anticonvulsants that inhibit PTZ-induced seizures in both zebrafish and mice. Here, we present the first report of the anticonvulsant properties of bisabolene sesquiterpenoids and provide evidence which warrants further investigation toward the mechanistic understanding of their neuromodulatory activity.
Asunto(s)
Anticonvulsivantes/uso terapéutico , Curcuma/química , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Convulsiones/tratamiento farmacológico , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Cromatografía Líquida de Alta Presión , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Electroencefalografía , Proteínas Fluorescentes Verdes/genética , Espectroscopía de Resonancia Magnética , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Movimiento/efectos de los fármacos , Pentilenotetrazol/toxicidad , Extractos Vegetales/química , Convulsiones/inducido químicamente , Ácido Valproico/uso terapéutico , Pez CebraRESUMEN
The rapid acquisition of structural and bioactivity information on natural products (NPs) at the sub- milligram scale is key for performing efficient bioactivity-guided isolations. Zebrafish offer the possibility of rapid in vivo bioactivity analysis of small molecules at the microgram scale - an attractive feature when combined with high-resolution fractionation technologies and analytical methods such as UHPLC-TOF-MS and microflow NMR. Numerous biomedically relevant assays are now available in zebrafish, encompassing most indication areas. Zebrafish also provide the possibility to screen bioactive compounds for potential hepato-, cardio-, and neurotoxicities at a very early stage in the drug discovery process. Here we describe two strategies using zebrafish bioassays for the high-resolution in vivo bioactivity profiling of medicinal plants, using either a one-step or a two-step procedure for active compound isolation directly into 96-well plates. The analysis of the microfractions by microflow NMR in combination with UHPLC-TOF-MS of the extract enables the rapid dereplication of compounds and an estimation of their microgram quantities for zebrafish bioassays. Both the one-step and the two-step isolation procedures enable a rapid estimation of the bioactive potential of NPs directly from crude extracts. In summary, we present an in vivo , microgram-scale NP discovery platform combining zebrafish bioassays with microscale analytics to identify, isolate and evaluate pharmacologically active NPs.
Asunto(s)
Bioensayo/métodos , Productos Biológicos/química , Animales , Productos Biológicos/farmacología , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Pez CebraRESUMEN
New pharmacological approaches that target orexin receptors (OXRs) are being developed to treat sleep disorders such as insomnia and narcolepsy, with fewer side effects than existing treatments. Orexins are neuropeptides that exert excitatory effects on postsynaptic neurons via the OXRs, and are important in regulating sleep/wake states. To date, there are three FDA-approved dual orexin receptor antagonists for the treatment of insomnia, and several small molecule oral OX2R (OXR type 2) agonists are in the pipeline for addressing the orexin deficiency in narcolepsy. To find new hypnotics and psychostimulants, rodents have been the model of choice, but they are costly and have substantially different sleep patterns to humans. As an alternative model, zebrafish larvae that like humans are diurnal and show peak daytime activity and rest at night offer several potential advantages including the ability for high throughput screening. To pharmacologically validate the use of a zebrafish model in the discovery of new compounds, we aimed in this study to evaluate the functionality of a set of known small molecule OX2R agonists and antagonists on human and zebrafish OXRs and to probe their effects on the behavior of zebrafish larvae. To this end, we developed an in vitro IP-One Homogeneous Time Resolved Fluorescence (HTRF) immunoassay, and in vivo locomotor assays that record the locomotor activity of zebrafish larvae under physiological light conditions as well as under dark-light triggers. We demonstrate that the functional IP-One test is a good predictor of biological activity in vivo. Moreover, the behavioral data show that a high-throughput assay that records the locomotor activity of zebrafish throughout the evening, night and morning is able to distinguish between OXR agonists and antagonists active on the zebrafish OXR. Conversely, a locomotor assay with alternating 30 min dark-light transitions throughout the day is not able to distinguish between the two sets of compounds, indicating the importance of circadian rhythm to their pharmacological activity. Overall, the results show that a functional IP-one test in combination with a behavioral assay using zebrafish is well-suited as a discovery platform to find novel compounds that target OXRs for the treatment of sleep disorders.
RESUMEN
Synaptic vesicle glycoprotein 2A (SV2A) regulates action potential-dependent neurotransmitter release and is commonly known as the primary binding site of an approved anti-epileptic drug, levetiracetam. Although several rodent knockout models have demonstrated the importance of SV2A for functional neurotransmission, its precise physiological function and role in epilepsy pathophysiology remains to be elucidated. Here, we present a novel sv2a knockout model in zebrafish, a vertebrate with complementary advantages to rodents. We demonstrated that 6 days post fertilization homozygous sv2a-/- mutant zebrafish larvae, but not sv2a +/- and sv2a+/+ larvae, displayed locomotor hyperactivity and spontaneous epileptiform discharges, however, no major brain malformations could be observed. A partial rescue of this epileptiform brain activity could be observed after treatment with two commonly used anti-epileptic drugs, valproic acid and, surprisingly, levetiracetam. This observation indicated that additional targets, besides Sv2a, maybe are involved in the protective effects of levetiracetam against epileptic seizures. Furthermore, a transcriptome analysis provided insights into the neuropathological processes underlying the observed epileptic phenotype. While gene expression profiling revealed only one differentially expressed gene (DEG) between wildtype and sv2a +/- larvae, there were 4386 and 3535 DEGs between wildtype and sv2a-/- , and sv2a +/- and sv2a-/- larvae, respectively. Pathway and gene ontology (GO) enrichment analysis between wildtype and sv2a-/- larvae revealed several pathways and GO terms enriched amongst up- and down-regulated genes, including MAPK signaling, synaptic vesicle cycle, and extracellular matrix organization, all known to be involved in epileptogenesis and epilepsy. Importantly, we used the Connectivity map database to identify compounds with opposing gene signatures compared to the one observed in sv2a-/- larvae, to finally rescue the epileptic phenotype. Two out of three selected compounds rescued electrographic discharges in sv2a-/- larvae, while negative controls did not. Taken together, our results demonstrate that sv2a deficiency leads to increased seizure vulnerability and provide valuable insight into the functional importance of sv2a in the brain in general. Furthermore, we provided evidence that the concept of connectivity mapping represents an attractive and powerful approach in the discovery of novel compounds against epilepsy.
RESUMEN
Tuberous sclerosis complex (TSC) is a multisystem genetic disorder caused by pathogenic variants in TSC1 and TSC2 genes. TSC patients present with seizures and brain abnormalities such as tubers and subependymal giant cells astrocytoma (SEGA). Despite common molecular and clinical features, the severity of the disease varies greatly, even intrafamilially. The second hit hypothesis suggests that an additional, inactivating mutation in the remaining functional allele causes a more severe phenotype and therefore explains the phenotypic variability. Recently, second hit mutations have been detected frequently in mTORopathies. To investigate the pathophysiological effects of second hit mutations, several mouse models have been developed. Here, we opted for a double mutant zebrafish model that carries a LOF mutation both in the tsc2 and the depdc5 gene. To the best of our knowledge, this is the first time a second-hit model has been studied in zebrafish. Significantly, the DEP domain-containing protein 5 (DEPDC5) gene has an important role in the regulation of mTORC1, and the combination of a germline TSC2 and somatic DEPDC5 mutation has been described in a TSC patient with intractable epilepsy. Our depdc5 -/- x tsc2 -/- double mutant zebrafish line displayed greatly increased levels of mammalian target of rapamycin (mTORC1) activity, augmented seizure susceptibility, and early lethality which could be rescued by rapamycin. Histological analysis of the brain revealed ventricular dilatation in the tsc2 and double homozygotes. RNA-sequencing showed a linear relation between the number of differentially expressed genes (DEGs) and the degree of mTORC1 hyperactivity. Enrichment analysis of their transcriptomes revealed that many genes associated with neurological developmental processes were downregulated and mitochondrial genes were upregulated. In particular, the transcriptome of human SEGA lesions overlapped strongly with the double homozygous zebrafish larvae. The data highlight the clinical relevance of the depdc5 -/- x tsc2 -/- double mutant zebrafish larvae that showed a more severe phenotype compared to the single mutants. Finally, analysis of gene-drug interactions identified interesting pharmacological targets for SEGA, underscoring the value of our small zebrafish vertebrate model for future drug discovery efforts.