Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(11): 6196-6204, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32132213

RESUMEN

Previous research has focused on the anterior cingulate cortex (ACC) as a key brain region in the mitigation of the competition that arises from two simultaneously active signals. However, to date, no study has demonstrated that ACC is necessary for this form of behavioral flexibility, nor have any studies shown that ACC acts by modulating downstream brain regions such as the dorsal medial striatum (DMS) that encode action plans necessary for task completion. Here, we performed unilateral excitotoxic lesions of ACC while recording downstream from the ipsilateral hemisphere of DMS in rats, performing a variant of the STOP-signal task. We show that on STOP trials lesioned rats perform worse, in part due to the failure of timely directional action plans to emerge in the DMS, as well as the overrepresentation of the to-be-inhibited behavior. Collectively, our findings suggest that ACC is necessary for the mitigation of competing inputs and validates many of the existing theoretical predictions for the role of ACC in cognitive control.


Asunto(s)
Adaptación Psicológica/fisiología , Conducta Animal/fisiología , Conflicto Psicológico , Giro del Cíngulo/fisiología , Animales , Mapeo Encefálico/instrumentación , Señales (Psicología) , Electrodos Implantados , Femenino , Giro del Cíngulo/citología , Masculino , Neuronas/fisiología , Ratas , Técnicas Estereotáxicas/instrumentación
2.
Addict Biol ; 26(2): e12895, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187805

RESUMEN

Opioid use by pregnant women is an understudied consequence associated with the opioid epidemic, resulting in a rise in the incidence of neonatal opioid withdrawal syndrome (NOWS) and lifelong neurobehavioral deficits that result from perinatal opioid exposure. There are few preclinical models that accurately recapitulate human perinatal drug exposure and few focus on fentanyl, a potent synthetic opioid that is a leading driver of the opioid epidemic. To investigate the consequences of perinatal opioid exposure, we administered fentanyl to mouse dams in their drinking water throughout gestation and until litters were weaned at postnatal day (PD) 21. Fentanyl-exposed dams delivered smaller litters and had higher litter mortality rates compared with controls. Metrics of maternal care behavior were not affected by the treatment, nor were there differences in dams' weight or liquid consumption throughout gestation and 21 days postpartum. Twenty-four hours after weaning and drug cessation, perinatal fentanyl-exposed mice exhibited signs of spontaneous somatic withdrawal behavior and sex-specific weight fluctuations that normalized in adulthood. At adolescence (PD 35), they displayed elevated anxiety-like behaviors and decreased grooming, assayed in the elevated plus maze and sucrose splash tests. Finally, by adulthood (PD 55), they displayed impaired performance in a two-tone auditory discrimination task. Collectively, our findings suggest that perinatal fentanyl-exposed mice exhibit somatic withdrawal behavior and change into early adulthood reminiscent of humans born with NOWS.


Asunto(s)
Conducta Animal/efectos de los fármacos , Fentanilo/farmacología , Narcóticos/farmacología , Síndrome de Abstinencia Neonatal/patología , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Ansiedad/patología , Femenino , Tamaño de la Camada , Conducta Materna/efectos de los fármacos , Ratones , Embarazo
3.
Curr Biol ; 32(15): 3276-3287.e3, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803273

RESUMEN

The ability to inhibit or adapt unwanted actions or movements is a critical feature of almost all forms of behavior. Many have attributed this ability to frontal brain areas such as the anterior cingulate cortex (ACC) and the medial prefrontal cortex (mPFC), but the exact contribution of each brain region is often debated because their functions are not examined in animals performing the same task. Recently, we have shown that ACC signals a need for cognitive control and is crucial for the adaptation of action selection signals in dorsomedial striatum (DMS) in rats performing a stop-change task. Here, we show that unlike ACC, the prelimbic region of mPFC does not disrupt the inhibition or adaption of an action plan at either the level of behavior or downstream firing in DMS. Instead, lesions to mPFC correlate with changes in DMS signals involved in action initiation and disrupt performance on GO trials while improving performance on STOP trials.


Asunto(s)
Cuerpo Estriado , Corteza Prefrontal , Animales , Cognición/fisiología , Cuerpo Estriado/fisiología , Giro del Cíngulo/fisiología , Neostriado , Corteza Prefrontal/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA