Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(43): E2929-38, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23027962

RESUMEN

Spatial regulation of tyrosine phosphorylation is important for many aspects of cell biology. However, phosphotyrosine accounts for less than 1% of all phosphorylated substrates, and it is typically a very transient event in vivo. These factors complicate the identification of key tyrosine kinase substrates, especially in the context of their extraordinary spatial organization. Here, we describe an approach to identify tyrosine kinase substrates based on their subcellular distribution from within cells. This method uses an unnatural amino acid-modified Src homology 2 (SH2) domain that is expressed within cells and can covalently trap phosphotyrosine proteins on exposure to light. This SH2 domain-based photoprobe was targeted to cellular structures, such as the actin cytoskeleton, mitochondria, and cellular membranes, to capture tyrosine kinase substrates unique to each cellular region. We demonstrate that RhoA, one of the proteins associated with actin, can be phosphorylated on two tyrosine residues within the switch regions, suggesting that phosphorylation of these residues might modulate RhoA signaling to the actin cytoskeleton. We conclude that expression of SH2 domains within cellular compartments that are capable of covalent phototrapping can reveal the spatial organization of tyrosine kinase substrates that are likely to be important for the regulation of subcellular structures.


Asunto(s)
Fosfoproteínas/metabolismo , Fosfotirosina/metabolismo , Fracciones Subcelulares/metabolismo , Dominios Homologos src , Compartimento Celular , Células HEK293 , Humanos , Espectrometría de Masas , Fosforilación
2.
Biochim Biophys Acta ; 1833(4): 901-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22889610

RESUMEN

In response to stress or injury the heart undergoes a pathological remodeling process, associated with hypertrophy, cardiomyocyte death and fibrosis, that ultimately causes cardiac dysfunction and heart failure. It has become increasingly clear that signaling events associated with these pathological cardiac remodeling events are regulated by scaffolding and anchoring proteins, which allow coordination of pathological signals in space and time. A-kinase anchoring proteins (AKAPs) constitute a family of functionally related proteins that organize multiprotein signaling complexes that tether the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to ensure integration and processing of multiple signaling pathways. This review will discuss the role of AKAPs in the cardiac response to stress. Particular emphasis will be given to the adaptative process associated with cardiac hypoxia as well as the remodeling events linked to cardiac hypertrophy and heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Cardiomegalia/metabolismo , Hipoxia/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Adaptación Fisiológica , Cardiomegalia/genética , Cardiomegalia/patología , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Humanos , Hipoxia/genética , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Oxígeno/metabolismo , Unión Proteica , Transducción de Señal , Estrés Fisiológico
3.
Cell Chem Biol ; 23(9): 1135-1146, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27593112

RESUMEN

Uncontrolled activation of Rho signaling by RhoGEFs, in particular AKAP13 (Lbc) and its close homologs, is implicated in a number of human tumors with poor prognosis and resistance to therapy. Structure predictions and alanine scanning mutagenesis of Lbc identified a circumscribed hot region for RhoA recognition and activation. Virtual screening targeting that region led to the discovery of an inhibitor of Lbc-RhoA interaction inside cells. By interacting with the DH domain, the compound inhibits the catalytic activity of Lbc, halts cellular responses to activation of oncogenic Lbc pathways, and reverses a number of prostate cancer cell phenotypes such as proliferation, migration, and invasiveness. This study provides insights into the structural determinants of Lbc-RhoA recognition. This is a successful example of structure-based discovery of a small protein-protein interaction inhibitor able to halt oncogenic Rho signaling in cancer cells with therapeutic implications.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Anclaje a la Quinasa A/metabolismo , Humanos , Antígenos de Histocompatibilidad Menor/metabolismo , Modelos Moleculares , Estructura Molecular , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA