RESUMEN
By January 2022, 156 countries had submitted new or updated nationally determined contributions (NDCs) under the Paris Agreement. This study analyses the greenhouse gas (GHG) emissions and macroeconomic impacts of the new NDCs. The total impact of the updated unconditional and conditional NDCs of these countries on global emission levels by 2030 is an additional reduction of about 3.8 and 3.9 GtCO2eq, respectively, compared to the previously submitted NDCs as of October 2020. However, this total reduction must be about three times greater to be consistent with keeping global temperature increase to well below 2 °C, and even seven times greater for 1.5 °C. Nine G20 economies have pledged stronger emission reduction targets for 2030 in their updated NDCs, leading to additional aggregated GHG emission reductions of about 3.3 GtCO2eq, compared to those in the previous NDCs. The socio-economic impacts of the updated NDCs are limited in major economies and largely depend on the emission reduction effort included in the NDCs. However, two G20 economies have submitted new targets that will lead to an increase in emissions of about 0.3 GtCO2eq, compared to their previous NDCs. The updated NDCs of non-G20 economies contain further net reductions. We conclude that countries should strongly increase the ambition levels of their updated NDC submissions to keep the climate goals of the Paris Agreement within reach. Supplementary Information: The online version contains supplementary material available at 10.1007/s11027-022-10008-7.
RESUMEN
This paper presents a modeling comparison on how stabilization of global climate change at about 2 °C above the pre-industrial level could affect economic and energy systems development in China and India. Seven General Equilibrium (CGE) and energy system models on either the global or national scale are soft-linked and harmonized with respect to population and economic assumptions. We simulate a climate regime, based on long-term convergence of per capita carbon dioxide (CO2) emissions, starting from the emission pledges presented in the Copenhagen Accord to the United Nations Framework Convention on Climate Change and allowing full emissions trading between countries. Under the climate regime, Indian emission allowances are allowed to grow more than the Chinese allowances, due to the per capita convergence rule and the higher population growth in India. Economic and energy implications not only differ among the two countries, but also across model types. Decreased energy intensity is the most important abatement approach in the CGE models, while decreased carbon intensity is most important in the energy system models. The reduction in carbon intensity is mostly achieved through deployment of carbon capture and storage, renewable energy sources and nuclear energy. The economic impacts are generally higher in China than in India, due to higher 2010-2050 cumulative abatement in China and the fact that India can offset more of its abatement cost though international emission trading.
RESUMEN
Looking at policies instead of promises shows that global climate targets may be missed by a large margin.
Asunto(s)
Cambio Climático , Clima , Política AmbientalRESUMEN
Over 100 countries have set or are considering net-zero emissions or neutrality targets. However, most of the information on emissions neutrality (such as timing) is provided for the global level. Here, we look at national-level neutrality-years based on globally cost-effective 1.5 °C and 2 °C scenarios from integrated assessment models. These results indicate that domestic net zero greenhouse gas and CO2 emissions in Brazil and the USA are reached a decade earlier than the global average, and in India and Indonesia later than global average. These results depend on choices like the accounting of land-use emissions. The results also show that carbon storage and afforestation capacity, income, share of non-CO2 emissions, and transport sector emissions affect the variance in projected phase-out years across countries. We further compare these results to an alternative approach, using equity-based rules to establish target years. These results can inform policymakers on net-zero targets.
RESUMEN
How can dangerous interference with the climate system be avoided? Science can help decision-makers answer this political question. Earlier publications have focused on the probability of keeping global mean temperature change below certain thresholds by stabilizing greenhouse gas concentrations at particular levels. We compare the results of such "stabilization profiles" with a set of "peaking profiles" that reduce emissions further after stabilization and thus result in a concentration peak. Given the inertia in the climate system, stabilization profiles lead to ongoing warming beyond 2100 until the temperature reaches equilibrium. This warming partly can be prevented for peaking profiles. In this way, these profiles can increase the likelihood of achieving temperature thresholds by 10-20% compared with the likelihood for the associated stabilization profiles. Because the additional mitigation efforts and thus costs for peaking profiles lie mainly beyond 2100, peaking profiles achieving temperature thresholds with the same likelihood as the original stabilization profile, but at considerably lower cost (up to 40%), can be identified. The magnitude of the cost reductions depends on the assumptions on discounting. Peaking profiles and overshoot profiles with a limited overshoot may, in particular, play an important role in making more ambitious climate targets feasible.