Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Regul Toxicol Pharmacol ; 81: 362-371, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27664324

RESUMEN

Less than lifetime exposure has confronted risk assessors as to how to interpret the risks for human health in case a chronic health-based limit is exceeded. Intermittent, fluctuating and peak exposures do not match with the basis of the chronic limit values possibly leading to conservative outcomes. This paper presents guidance on how to deal with human risk assessment of less than lifetime exposure. Important steps to be considered are characterization of the human exposure situation, evaluation whether the human less than lifetime exposure scenario corresponds to a non-chronic internal exposure: toxicokinetic and toxicodynamic considerations, and, finally, re-evaluation of the risk assessment. Critical elements for these steps are the mode of action, Haber's rule, and toxicokinetics (ADME) amongst others. Previous work for the endpoints non-genotoxic carcinogenicity and developmental toxicity is included in the guidance. The guidance provides a way to consider the critical elements, without setting default factors to correct for the less than lifetime exposure in risk assessment.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Medición de Riesgo/métodos , Humanos , Cinética , Factores de Tiempo
2.
Inhal Toxicol ; 26(5): 310-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24640966

RESUMEN

Consumers using air fresheners are exposed to the emitted ingredients, including fragrances, via the respiratory tract. Several fragrances are known skin sensitizers, but it is unknown whether inhalation exposure to these chemicals can induce respiratory sensitization. Effects on the immune system were assessed by testing a selection of five fragrance allergens in the respiratory local lymph node assay (LLNA). The probability and extent of exposure were assessed by measuring concentrations of the 24 known fragrance allergens in 109 air fresheners. It was shown that the most frequently used fragrances in air fresheners were D-limonene and linalool. In the respiratory LLNA, these fragrances were negative. Of the other tested chemicals, only isoeugenol induced a statistically significant increase in cell proliferation. Consumer exposure was assessed in more detail for D-limonene, linalool, and isoeugenol by using exposure modeling tools. It was shown that the most frequently used fragrances in air fresheners, D-limonene, and linalool gave rise to a higher consumer exposure compared with isoeugenol. To evaluate whether the consumer exposure to these fragrances is low or high, these levels were compared with measured air concentrations of diisocyanates, known human respiratory sensitizers. This comparison showed that consumer exposure from air fresheners to D-limonene, linalool, and isoeugenol is considerably lower than occupational exposure to diisocyanates. By combing this knowledge on sensitizing potency with the much lower exposure compared to diisocyanates it seems highly unlikely that isoeugenol can induce respiratory sensitization in consumers using air fresheners.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire Interior/efectos adversos , Alérgenos/toxicidad , Perfumes/toxicidad , Hipersensibilidad Respiratoria/inducido químicamente , Monoterpenos Acíclicos , Contaminantes Atmosféricos/análisis , Alérgenos/análisis , Animales , Ciclohexenos/toxicidad , Eugenol/análogos & derivados , Eugenol/toxicidad , Exposición por Inhalación/efectos adversos , Limoneno , Ensayo del Nódulo Linfático Local , Masculino , Ratones , Ratones Endogámicos BALB C , Monoterpenos/toxicidad , Perfumes/análisis , Medición de Riesgo , Terpenos/toxicidad
3.
Regul Toxicol Pharmacol ; 62(2): 231-40, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210287

RESUMEN

Exposure Based Waiving (EBW) is one of the options in REACH when there is insufficient hazard data on a specific endpoint. Rules for adaptation of test requirements are specified and a general option for EBW is given via Appendix XI of REACH, allowing waiving of repeated dose toxicity studies, reproductive toxicity studies and carcinogenicity studies under a number of conditions if exposure is very low. A decision tree is described that was developed in the European project OSIRIS (Optimised Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-Test and Test Information) to help decide in what cases EBW can be justified. The decision tree uses specific criteria as well as more general questions. For the latter, guidance on interpretation and resulting conclusions is provided. Criteria and guidance are partly based on an expert elicitation process. Among the specific criteria a number of proposed Thresholds of Toxicological Concern are used. The decision tree, expanded with specific parts on absorption, distribution, metabolism and excretion that are not described in this paper, is implemented in the OSIRIS webtool on integrated testing strategies.


Asunto(s)
Exposición a Riesgos Ambientales/prevención & control , Medición de Riesgo/métodos , Pruebas de Toxicidad/normas , Árboles de Decisión , Determinación de Punto Final , Guías como Asunto , Humanos
4.
Environ Mol Mutagen ; 61(1): 94-113, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31709603

RESUMEN

We recently published a next generation framework for assessing the risk of genomic damage via exposure to chemical substances. The framework entails a systematic approach with the aim to quantify risk levels for substances that induce genomic damage contributing to human adverse health outcomes. Here, we evaluated the utility of the framework for assessing the risk for industrial chemicals, using the case of benzene. Benzene is a well-studied substance that is generally considered a genotoxic carcinogen and is known to cause leukemia. The case study limits its focus on occupational and general population health as it relates to benzene exposure. Using the framework as guidance, available data on benzene considered relevant for assessment of genetic damage were collected. Based on these data, we were able to conduct quantitative analyses for relevant data sets to estimate acceptable exposure levels and to characterize the risk of genetic damage. Key observations include the need for robust exposure assessments, the importance of information on toxicokinetic properties, and the benefits of cheminformatics. The framework points to the need for further improvement on understanding of the mechanism(s) of action involved, which would also provide support for the use of targeted tests rather than a prescribed set of assays. Overall, this case study demonstrates the utility of the next generation framework to quantitatively model human risk on the basis of genetic damage, thereby enabling a new, innovative risk assessment concept. Environ. Mol. Mutagen. 61:94-113, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Asunto(s)
Benceno/toxicidad , Carcinógenos/toxicidad , Mutagénesis/efectos de los fármacos , Mutágenos/toxicidad , Animales , Benceno/metabolismo , Carcinógenos/metabolismo , Daño del ADN/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Leucemia/inducido químicamente , Leucemia/genética , Pruebas de Mutagenicidad/métodos , Mutágenos/metabolismo , Exposición Profesional/efectos adversos , Medición de Riesgo/métodos
5.
J Expo Sci Environ Epidemiol ; 25(3): 317-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25352161

RESUMEN

As personal care products (PCPs) are used in close contact with a person, they are a major source of consumer exposure to chemical substances contained in these products. The estimation of realistic consumer exposure to substances in PCPs is currently hampered by the lack of appropriate data and methods. To estimate aggregate exposure of consumers to substances contained in PCPs, a person-oriented consumer exposure model has been developed (the Probabilistic Aggregate Consumer Exposure Model, PACEM). The model simulates daily exposure in a population based on product use data collected from a survey among the Dutch population. The model is validated by comparing diethyl phthalate (DEP) dose estimates to dose estimates based on biomonitoring data. It was found that the model's estimates compared well with the estimates based on biomonitoring data. This suggests that the person-oriented PACEM model is a practical tool for assessing realistic aggregate exposures to substances in PCPs. In the future, PACEM will be extended with use pattern data on other product groups. This will allow for assessing aggregate exposure to substances in consumer products across different product groups.


Asunto(s)
Cosméticos/química , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Modelos Estadísticos , Ácidos Ftálicos/análisis , Monitoreo del Ambiente , Humanos , Países Bajos , Medición de Riesgo/métodos
6.
J Expo Sci Environ Epidemiol ; 24(2): 208-14, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23801276

RESUMEN

In the risk assessment of chemical substances, aggregation of exposure to a substance from different sources via different pathways is not common practice. Focusing the exposure assessment on a substance from a single source can lead to a significant underestimation of the risk. To gain more insight on how to perform an aggregate exposure assessment, we applied a deterministic (tier 1) and a person-oriented probabilistic approach (tier 2) for exposure to the four most common parabens through personal care products in children between 0 and 3 years old. Following a deterministic approach, a worst-case exposure estimate is calculated for methyl-, ethyl-, propyl- and butylparaben. As an illustration for risk assessment, Margins of Exposure (MoE) are calculated. These are 991 and 4966 for methyl- and ethylparaben, and 8 and 10 for propyl- and butylparaben, respectively. In tier 2, more detailed information on product use has been obtained from a small survey on product use of consumers. A probabilistic exposure assessment is performed to estimate the variability and uncertainty of exposure in a population. Results show that the internal exposure for each paraben is below the level determined in tier 1. However, for propyl- and butylparaben, the percentile of the population with an exposure probability above the assumed "safe" MoE of 100, is 13% and 7%, respectively. In conclusion, a tier 1 approach can be performed using simple equations and default point estimates, and serves as a starting point for exposure and risk assessment. If refinement is warranted, the more data demanding person-oriented probabilistic approach should be used. This probabilistic approach results in a more realistic exposure estimate, including the uncertainty, and allows determining the main drivers of exposure. Furthermore, it allows to estimate the percentage of the population for which the exposure is likely to be above a specific value.


Asunto(s)
Exposición a Riesgos Ambientales , Productos Domésticos , Parabenos/efectos adversos , Preescolar , Humanos , Lactante , Recién Nacido , Probabilidad , Medición de Riesgo , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA