Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 33(8): 1424-1437, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37726147

RESUMEN

In contrast to other mammals, the spiny mouse (Acomys) regenerates skin and ear tissue, which includes hair follicles, glands, and cartilage, in a scar-free manner. Ear punch regeneration is asymmetric with only the proximal wound side participating in regeneration. Here, we show that cues originating from the proximal side are required for normal regeneration and use spatially resolved transcriptomics (tomo-seq) to understand the molecular and cellular events underlying this process. Analyzing gene expression across the ear and comparing expression modules between proximal and distal wound sides, we identify asymmetric gene expression patterns and pinpoint regenerative processes in space and time. Moreover, using a comparative approach with nonregenerative rodents (Mus, Meriones), we strengthen a hypothesis in which particularities in the injury-induced immune response may be one of the crucial determinants for why spiny mice regenerate whereas their relatives do not. Our data are available in SpinyMine, an easy-to-use and expandable web-based tool for exploring Acomys regeneration-associated gene expression.


Asunto(s)
Murinae , Cicatrización de Heridas , Animales , Cicatrización de Heridas/genética , Murinae/genética , Transcriptoma , Regeneración/genética , Piel , Mamíferos/genética
2.
Development ; 147(8)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198154

RESUMEN

Development of plant vascular tissues involves tissue identity specification, growth, pattern formation and cell-type differentiation. Although later developmental steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we found that vascular identity was specified in the 16-cell embryo. After a transient precursor state, however, there was no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We found that, although an AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)-dependent auxin response was required, it was not sufficient for tissue specification. We therefore used a large-scale enhanced yeast one-hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of candidate regulators suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, can modulate vascular gene expression by tuning MP output through direct interaction. Our work uncovers components of a gene regulatory network that controls the initial specification of vascular tissue identity.


Asunto(s)
Arabidopsis/embriología , Tipificación del Cuerpo , Haz Vascular de Plantas/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tipificación del Cuerpo/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Haz Vascular de Plantas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Elementos de Respuesta/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Transcripción Genética
3.
NPJ Regen Med ; 6(1): 78, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789755

RESUMEN

Ischemic heart disease and by extension myocardial infarction is the primary cause of death worldwide, warranting regenerative therapies to restore heart function. Current models of natural heart regeneration are restricted in that they are not of adult mammalian origin, precluding the study of class-specific traits that have emerged throughout evolution, and reducing translatability of research findings to humans. Here, we present the spiny mouse (Acomys spp.), a murid rodent that exhibits bona fide regeneration of the back skin and ear pinna, as a model to study heart repair. By comparing them to ordinary mice (Mus musculus), we show that the acute injury response in spiny mice is similar, but with an associated tolerance to infarction through superior survivability, improved ventricular conduction, and near-absence of pathological remodeling. Critically, spiny mice display increased vascularization, altered scar organization, and a more immature phenotype of cardiomyocytes, with a corresponding improvement in heart function. These findings present new avenues for mammalian heart research by leveraging unique tissue properties of the spiny mouse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA