Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 137(Pt 4): 1019-29, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24566671

RESUMEN

Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation is a disorder caused by recessive mutations in the gene DARS2, which encodes mitochondrial aspartyl-tRNA synthetase. Recent observations indicate that the phenotypic range of the disease is much wider than initially thought. Currently, no treatment is available. The aims of our study were (i) to explore a possible genotype-phenotype correlation; and (ii) to identify potential therapeutic agents that modulate the splice site mutations in intron 2 of DARS2, present in almost all patients. A cross-sectional observational study was performed in 78 patients with two DARS2 mutations in the Amsterdam and Helsinki databases up to December 2012. Clinical information was collected via questionnaires. An inventory was made of the DARS2 mutations in these patients and those previously published. An assay was developed to assess mitochondrial aspartyl-tRNA synthetase enzyme activity in cells. Using a fluorescence reporter system we screened for drugs that modulate DARS2 splicing. Clinical information of 66 patients was obtained. The clinical severity varied from infantile onset, rapidly fatal disease to adult onset, slow and mild disease. The most common phenotype was characterized by childhood onset and slow neurological deterioration. Full wheelchair dependency was rare and usually began in adulthood. In total, 60 different DARS2 mutations were identified, 13 of which have not been reported before. Except for 4 of 42 cases published by others, all patients were compound heterozygous. Ninety-four per cent of the patients had a splice site mutation in intron 2. The groups of patients sharing the same two mutations were too small for formal assessment of genotype-phenotype correlation. However, some combinations of mutations were consistently associated with a mild phenotype. The mitochondrial aspartyl-tRNA synthetase activity was strongly reduced in patient cells. Among the compounds screened, cantharidin was identified as the most potent modulator of DARS2 splicing. In conclusion, the phenotypic spectrum of leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation is wide, but most often the disease has a relatively slow and mild course. The available evidence suggests that the genotype influences the phenotype, but because of the high number of private mutations, larger numbers of patients are necessary to confirm this. The activity of mitochondrial aspartyl-tRNA synthetase is significantly reduced in patient cells. A compound screen established a 'proof of principle' that the splice site mutation can be influenced. This finding is promising for future therapeutic strategies.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Aspartato-ARNt Ligasa/deficiencia , Leucoencefalopatías/complicaciones , Leucoencefalopatías/genética , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Adolescente , Adulto , Edad de Inicio , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Cantaridina/farmacología , Niño , Preescolar , Estudios Transversales , Análisis Mutacional de ADN , Progresión de la Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Leucoencefalopatías/tratamiento farmacológico , Leucoencefalopatías/enzimología , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/enzimología , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
2.
Biochem J ; 450(2): 345-50, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23216004

RESUMEN

The autosomal recessive white matter disorder LBSL (leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation) is caused by mutations in DARS2, coding for mtAspRS (mitochondrial aspartyl-tRNA synthetase). Generally, patients are compound heterozygous for mutations in DARS2. Many different mutations have been identified in patients, including several missense mutations. In the present study, we have examined the effects of missense mutations found in LBSL patients on the expression, enzyme activity, localization and dimerization of mtAspRS, which is important for understanding the cellular defect underlying the pathogenesis of the disease. Nine different missense mutations were analysed and were shown to have various effects on mtAspRS properties. Several mutations have a direct effect on the catalytic activity of the enzyme; others have an effect on protein expression or dimerization. Most mutations have a clear impact on at least one of the properties of mtAspRS studied, probably resulting in a small contribution of the missense variants to the mitochondrial aspartylation activity in the cell.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Mitocondrias/enzimología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación Missense , Aspartato-ARNt Ligasa/deficiencia , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Células HEK293 , Humanos , Inmunohistoquímica , Leucoencefalopatías/patología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Transfección
3.
Biochem J ; 441(3): 955-62, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22023289

RESUMEN

LBSL (leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation) is an autosomal recessive white matter disorder with slowly progressive cerebellar ataxia, spasticity and dorsal column dysfunction. Magnetic resonance imaging shows characteristic abnormalities in the cerebral white matter and specific brain stem and spinal cord tracts. LBSL is caused by mutations in the gene DARS2, which encodes mtAspRS (mitochondrial aspartyl-tRNA synthetase). The selective involvement of specific white matter tracts in LBSL is striking since this protein is ubiquitously expressed. Almost all LBSL patients have one mutation in intron 2 of DARS2, affecting the splicing of the third exon. Using a splicing reporter construct, we find cell-type-specific differences in the sensitivity to these mutations: the mutations have a larger effect on exon 3 exclusion in neural cell lines, especially neuronal cell lines, than in non-neural cell lines. Furthermore, correct inclusion of exon 3 in the normal mtAspRS mRNA occurs less efficiently in neural cells than in other cell types, and this effect is again most pronounced in neuronal cells. The combined result of these two effects may explain the selective vulnerability of specific white matter tracts in LBSL patients.


Asunto(s)
Empalme Alternativo/fisiología , Aspartato-ARNt Ligasa/genética , Tronco Encefálico/patología , Ácido Láctico/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Médula Espinal/patología , Empalme Alternativo/genética , Aspartato-ARNt Ligasa/metabolismo , Tronco Encefálico/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Leucoencefalopatías/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Médula Espinal/metabolismo , Transfección , Regulación hacia Arriba
4.
J Neurosci ; 30(10): 3857-64, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20220021

RESUMEN

The segregation and myelination of axons in the developing PNS, results from a complex series of cellular and molecular interactions between Schwann cells and axons. Previously we identified the Lgi4 gene (leucine-rich glioma-inactivated4) as an important regulator of myelination in the PNS, and its dysfunction results in arthrogryposis as observed in claw paw mice. Lgi4 is a secreted protein and a member of a small family of proteins that are predominantly expressed in the nervous system. Their mechanism of action is unknown but may involve binding to members of the Adam (A disintegrin and metalloprotease) family of transmembrane proteins, in particular Adam22. We found that Lgi4 and Adam22 are both expressed in Schwann cells as well as in sensory neurons and that Lgi4 binds directly to Adam22 without a requirement for additional membrane associated factors. To determine whether Lgi4-Adam22 function involves a paracrine and/or an autocrine mechanism of action we performed heterotypic Schwann cell sensory neuron cultures and cell type-specific ablation of Lgi4 and Adam22 in mice. We show that Schwann cells are the principal cellular source of Lgi4 in the developing nerve and that Adam22 is required on axons. Our results thus reveal a novel paracrine signaling axis in peripheral nerve myelination in which Schwann cell secreted Lgi4 functions through binding of axonal Adam22 to drive the differentiation of Schwann cells.


Asunto(s)
Proteínas ADAM/fisiología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/fisiología , Células de Schwann/fisiología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/genética , Proteínas ADAM/biosíntesis , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animales , Animales Recién Nacidos , Línea Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/fisiología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica/genética , Ratas , Células de Schwann/metabolismo , Células de Schwann/ultraestructura , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura
6.
Biomed Opt Express ; 3(9): 2184-9, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23024912

RESUMEN

We demonstrate a single-shot holographic phase microscope that combines short-coherence laser pulses with an off-axis geometry. By introducing a controlled pulse front tilt, ultrashort pulses are made to interfere over a large field-of-view without loss of fringe contrast. With this microscope, quantitative phase images of live cells can be recorded in a full-field geometry without moving parts. We perform phase imaging of HEK293 cells, to study the dynamics of cell volume regulation in response to an osmotic shock.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA