RESUMEN
Acetaminophen (APAP) is a readily available over-the-counter drug and is one of the most commonly used analgesics/antipyretics worldwide. Large interindividual variation in susceptibility toward APAP-induced liver failure has been reported. However, the exact underlying factors causing this variability in susceptibility are still largely unknown. The aim of this study was to better understand this variability in response to APAP by evaluating interindividual differences in gene expression changes and APAP metabolite formation in primary human hepatocytes (PHH) from several donors (n = 5) exposed in vitro to a non-toxic to toxic APAP dose range. To evaluate interindividual variation, gene expression data/levels of metabolites were plotted against APAP dose/donor. The correlation in APAP dose response between donors was calculated by comparing data points from one donor to the data points of all other donors using a Pearson-based correlation analysis. From that, a correlation score/donor for each gene/metabolite was defined, representing the similarity of the omics response to APAP in PHH of a particular donor to all other donors. The top 1 % highest variable genes were selected for further evaluation using gene set overrepresentation analysis. The biological processes in which the genes with high interindividual variation in expression were involved include liver regeneration, inflammatory responses, mitochondrial stress responses, hepatocarcinogenesis, cell cycle, and drug efficacy. Additionally, the interindividual variation in the expression of these genes could be associated with the variability in expression levels of hydroxyl/methoxy-APAP and C8H13O5N-APAP-glucuronide. The before-mentioned metabolites or their derivatives have also been reported in blood of humans exposed to therapeutic APAP doses. Possibly these findings can contribute to elucidating the causative factors of interindividual susceptibility toward APAP.
Asunto(s)
Acetaminofén/metabolismo , Acetaminofén/toxicidad , Analgésicos no Narcóticos/metabolismo , Analgésicos no Narcóticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Hepatocitos/efectos de los fármacos , Activación Metabólica , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Metabolómica , Fenotipo , Cultivo Primario de CélulasRESUMEN
Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study the effects of human exposure to, e.g., chemical carcinogens at the whole genome level, thus yielding broad-ranging molecular information on possible carcinogenic effects. Since genes do not operate individually but rather through concerted interactions, analyzing and visualizing networks of genes should provide important mechanistic information, especially upon connecting them to functional parameters, such as those derived from measurements of biomarkers for exposure and carcinogenic risk. Conventional methods such as hierarchical clustering and correlation analyses are frequently used to address these complex interactions but are limited as they do not provide directional causal dependence relationships. Therefore, our aim was to apply Bayesian network inference with the purpose of phenotypic anchoring of modified gene expressions. We investigated a use case on transcriptomic responses to cigarette smoking in humans, in association with plasma cotinine levels as biomarkers of exposure and aromatic DNA-adducts in blood cells as biomarkers of carcinogenic risk. Many of the genes that appear in the Bayesian networks surrounding plasma cotinine, and to a lesser extent around aromatic DNA-adducts, hold biologically relevant functions in inducing severe adverse effects of smoking. In conclusion, this study shows that Bayesian network inference enables unbiased phenotypic anchoring of transcriptomics responses. Furthermore, in all inferred Bayesian networks several dependencies are found which point to known but also to new relationships between the expression of specific genes, cigarette smoke exposure, DNA damaging-effects, and smoking-related diseases, in particular associated with apoptosis, DNA repair, and tumor suppression, as well as with autoimmunity.
Asunto(s)
Teorema de Bayes , Fumar , Transcriptoma , Adulto , Apoptosis , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Cotinina/sangre , Aductos de ADN/análisis , Regulación hacia Abajo , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Regulación hacia ArribaRESUMEN
With the number of new drug candidates increasing every year, there is a need for high-throughput human toxicity screenings. As the liver is the most important organ in drug metabolism and thus capable of generating relatively high levels of toxic metabolites, it is important to find a reliable strategy to screen for drug-induced hepatotoxicity. Microarray-based transcriptomics is a well-established technique in toxicogenomics research and is an ideal approach to screen for drug-induced injury at an early stage. The aim of this study was to prove the principle of classifying known hepatotoxicants and nonhepatotoxicants using their distinctive gene expression profiles in vitro in HepG2 cells. Furthermore, we undertook to subclassify the hepatotoxic compounds by investigating the subclass of cholestatic compounds. Prediction analysis for microarrays was used for classification of hepatotoxicants and nonhepatotoxicants, which resulted in an accuracy of 92% on the training set and 91% on the validation set, using 36 genes. A second model was set up with the goal of finding classifiers for cholestasis, resulting in 12 genes that appeared capable of correctly classifying 8 of the 9 cholestatic compounds, resulting in an accuracy of 93%. We were able to prove the principle that transcriptomic analyses of HepG2 cells can indeed be used to classify chemical entities for hepatotoxicity. Genes selected for classification of hepatotoxicity and cholestasis indicate that endoplasmic reticulum stress and the unfolded protein response may be important cellular effects of drug-induced liver injury. However, the number of compounds in both the training set and the validation set should be increased to improve the reliability of the prediction.
Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Antiinfecciosos/química , Antiinfecciosos/toxicidad , Antiinflamatorios/química , Antiinflamatorios/toxicidad , Anticonvulsivantes/química , Anticonvulsivantes/toxicidad , Antineoplásicos/química , Antineoplásicos/toxicidad , Regulación hacia Abajo/efectos de los fármacos , Perfilación de la Expresión Génica , Células Hep G2 , Humanos , Modelos Teóricos , Análisis de Secuencia por Matrices de Oligonucleótidos , Preparaciones Farmacéuticas/clasificación , Toxicogenética , Regulación hacia Arriba/efectos de los fármacosRESUMEN
The toxic mechanisms of cisplatin have been frequently studied in many species and in vitro cell models. The Netherlands Toxicogenomics Centre focuses on developing in vitro alternatives using genomics technologies for animal-based assays on, e.g. genotoxic hazards. Models such as human hepatocellular carcinoma cell line (HepG2) cells, mouse primary hepatocytes (PMH) and mouse embryonic stem cells (mESC) are used. Our aim was to identify possibly robust conserved mechanisms between these models using cisplatin as model genotoxic agent. Transcriptomic data newly generated from HepG2 cells and PMH exposed to 7 µM cisplatin for 12, 24 and 48h and 24 and 48h, respectively, were compared with published data from mESC exposed to 5 µM cisplatin for 2-24h. Due to differences in response time between models and marginal changes after shorter exposure periods, we focused on 24 and 48h. At gene level, 44 conserved differentially expressed genes (DEG), involved in processes such as apoptosis, cell cycle, DNA damage response and DNA repair, were found. Functional analysis shows that limited numbers of pathways are conserved. Transcription factor (TF) network analysis indicates 12 common TF networks responding among all models and time points. Four TF, HNF4-α, SP1, c-MYC and p53, capable of regulating ±50% of all DEG, seem of equal importance in all models and exposure periods. Here we showed that transcriptomic responses across several in vitro cell models following exposure to cisplatin are mainly determined by a conserved complex network of 4 TFs. These conserved responses are hypothesised to provide most relevant information for human toxicity prediction and may form the basis for new in vitro alternatives of risk assessment.
Asunto(s)
Cisplatino/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Neoplasias Hepáticas/genética , Factores de Transcripción/genética , Transcriptoma/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Transducción de Señal , Factores de Transcripción/metabolismoRESUMEN
Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2g dose) and oxidative stress responses (4g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites.
Asunto(s)
Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/metabolismo , Estrés Oxidativo/efectos de los fármacos , Acetaminofén/administración & dosificación , Acetaminofén/metabolismo , Adulto , Analgésicos no Narcóticos/administración & dosificación , Analgésicos no Narcóticos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Relación Dosis-Respuesta a Droga , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Oxidación-Reducción , ARN Mensajero/metabolismo , TranscriptomaRESUMEN
Toxicological studies assessing the safety of compounds for humans frequently use in vitro systems to characterize toxic responses in combination with transcriptomic analyses. Thus far, changes have mostly been investigated at the mRNA level. Recently, microRNAs have attracted attention because they are powerful negative regulators of mRNA levels and, thus, may be responsible for the modulation of important mRNA networks implicated in toxicity. This study aimed to identify possible microRNA-mRNA networks as novel interactions on the gene expression level after a genotoxic insult. We used benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, as a model genotoxic/carcinogenic compound. We analyzed time-dependent effects on mRNA and microRNA profiles in HepG2 cells, a widely used human liver cell line that expresses active p53 and is competent for the biotransformation of BaP. Changes in microRNA expression in response to BaP, in combination with multiple alterations of mRNA levels, were observed. Many of these altered mRNAs are targets of altered microRNAs. Using pathway analysis, we evaluated the relevance of such microRNA deregulations to genotoxicity. This revealed eight microRNAs that appear to participate in specific BaP-responsive pathways relevant to genotoxicity, such as apoptotic signaling, cell cycle arrest, DNA damage response, and DNA damage repair. Our results particularly highlight the potential of microRNA-29b, microRNA-26a-1*, and microRNA-122* as novel players in the BaP response. Therefore, this study demonstrates the added value of an integrated microRNA-mRNA approach for identifying molecular mechanisms induced by BaP in an in vitro human model.
Asunto(s)
Benzo(a)pireno/toxicidad , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Apoptosis/efectos de los fármacos , Benzo(a)pireno/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Células Hep G2 , Humanos , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
The γH2AX assay has recently been suggested as a new in vitro assay for detecting genotoxic (GTX) properties of chemicals. This assay is based on the phosphorylation of H2AX histone in response to DNA damage [i.e. induction of double-strand breaks (DSBs)]. Quantification of γH2AX foci using flow cytometry can rapidly detect DNA damage induced by chemicals that cause DNA DSBs. Up to now, only few compounds have been tested with this assay. The main goal of this study was to compare the performance of this automated γH2AX assay with that of standard in vitro genotoxicity assays in predicting in vivo genotoxicity. HepG2 cells were exposed to 64 selected compounds with known GTX properties and subsequently analysed for induction of γH2AX foci. The results of this assay were compared with public data from standard in vitro genotoxicity tests. Accuracy, sensitivity and specificity in predicting in vivo genotoxicity, using the γH2AX assay alone or in combinations with conventional assays, were calculated. Both the γH2AX assay and the bacterial mutagenicity test (Ames) were highly specific for in vivo GTX, whereas chromosomal aberration/micronucleus test (CA/MN) resulted in highest sensitivity. The currently widely used in vitro genotoxicity test battery-Ames test, mouse lymphoma assay (MLA) and CA/MN test-resulted in low accuracy (55-65%) to predict in vivo genotoxicity. Interestingly, the inclusion of γH2AX assay in the standard battery, instead of MLA assay, resulted in higher accuracy (62-70%) compared with other combinations. Advantage of the γH2AX assay in HepG2 cells is its high sensitivity to detect DNA-reactive GTX compounds, although the reduced sensitivity for compounds that require metabolic activation needs to be improved. In conclusion, the automated γH2AX assay can be a useful, fast and cost-effective human cell-based tool for early screening of compounds for in vivo genotoxicity.
Asunto(s)
Daño del ADN , Histonas/metabolismo , Pruebas de Mutagenicidad/métodos , Carcinógenos/toxicidad , Aberraciones Cromosómicas , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Células Hep G2 , Histonas/genética , Humanos , Fosforilación , Sensibilidad y EspecificidadRESUMEN
Potassium bromate (KBrO(3)) is an oxidising agent that has been widely used in the food and cosmetic industries. It has shown to be both a nephrotoxin and a renal carcinogen in in vivo and in vitro models. Here, we investigated the effects of KBrO(3) in the human and rat proximal tubular cell lines RPTEC/TERT1 and NRK-52E. A genome-wide transcriptomic screen was carried out from cells exposed to a sub-lethal concentration of KBrO(3) for 6, 24 and 72 h. Pathway analysis identified "glutathione metabolism", "Nrf2-mediated oxidative stress" and "tight junction (TJ) signalling" as the most enriched pathways. TJ signalling was less impacted in the rat model, and further studies revealed low transepithelial electrical resistance (TEER) and an absence of several TJ proteins in NRK-52E cells. In RPTEC/TERT1 cells, KBrO(3) exposure caused a decrease in TEER and resulted in altered expression of several TJ proteins. N-Acetylcysteine co-incubation prevented these effects. These results demonstrate that oxidative stress has, in conjunction with the activation of the cytoprotective Nrf2 pathway, a dramatic effect on the expression of tight junction proteins. The further understanding of the cross-talk between these two pathways could have major implications for epithelial repair, carcinogenesis and metastasis.
Asunto(s)
Bromatos/toxicidad , Túbulos Renales Proximales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Túbulos Renales Proximales/citología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Ratas , Uniones Estrechas/metabolismo , Pruebas de ToxicidadRESUMEN
Hepatic systems toxicology is the integrative analysis of toxicogenomic technologies, e.g., transcriptomics, proteomics, and metabolomics, in combination with traditional toxicology measures to improve the understanding of mechanisms of hepatotoxic action. Hepatic toxicology studies that have employed toxicogenomic technologies to date have already provided a proof of principle for the value of hepatic systems toxicology in hazard identification. In the present review, acetaminophen is used as a model compound to discuss the application of toxicogenomics in hepatic systems toxicology for its potential role in the risk assessment process, to progress from hazard identification towards hazard characterization. The toxicogenomics-based parallelogram is used to identify current achievements and limitations of acetaminophen toxicogenomic in vivo and in vitro studies for in vitro-to-in vivo and interspecies comparisons, with the ultimate aim to extrapolate animal studies to humans in vivo. This article provides a model for comparison of more species and more in vitro models enhancing the robustness of common toxicogenomic responses and their relevance to human risk assessment. To progress to quantitative dose-response analysis needed for hazard characterization, in hepatic systems toxicology studies, generation of toxicogenomic data of multiple doses/concentrations and time points is required. Newly developed bioinformatics tools for quantitative analysis of toxicogenomic data can aid in the elucidation of dose-responsive effects. The challenge herein is to assess which toxicogenomic responses are relevant for induction of the apical effect and whether perturbations are sufficient for the induction of downstream events, eventually causing toxicity.
Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Toxicogenética/métodos , Acetaminofén/administración & dosificación , Animales , Biología Computacional/métodos , Relación Dosis-Respuesta a Droga , Humanos , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodosRESUMEN
The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 µM) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silanos/toxicidad , Triazoles/toxicidad , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Madre Embrionarias/fisiología , Genes del Desarrollo/efectos de los fármacos , Ratones , Silanos/administración & dosificación , Triazoles/administración & dosificaciónRESUMEN
Diet plays a decisive role in promoting or preventing colon cancer. However, the specific effects of some nutrients remain unclear. The capacity of fruit and vegetables to prevent cancer has been associated with their fiber and antioxidant composition. We investigated whether consumption of a lyophilized red grape pomace containing proanthocyanidin-rich dietary fiber (grape antioxidant dietary fiber, GADF) by female C57BL/6J mice would affect the serum metabolic profile or colon mucosa gene expression using NMR techniques and DNA microarray, respectively. The mice were randomly assigned to 2 groups that for 2 wk consumed a standard rodent diet and were gavaged with 100 mg/kg body weight GADF suspended in water or an equivalent volume of plain tap water (10 mL/kg body weight). The amount of fiber supplemented was calculated to equal the current recommended daily levels of fiber consumption for humans. The inclusion of dietary GADF induced alterations in the expression of tumor suppressor genes and proto-oncogenes as well as the modulation of genes from pathways, including lipid biosynthesis, energy metabolism, cell cycle, and apoptosis. Overexpression of enzymes pertaining to the xenobiotic detoxifying system and endogenous antioxidant cell defenses was also observed. In summary, the genetic and metabolic profiles induced by GADF were consistent with the preventive effects of fiber and polyphenols. On the basis of these observations, we propose that GADF may contribute to reducing the risk of colon cancer.
Asunto(s)
Colon/efectos de los fármacos , Fibras de la Dieta/farmacología , Mucosa Intestinal/efectos de los fármacos , Proantocianidinas/química , Proantocianidinas/farmacología , Vitis/química , Animales , Colon/metabolismo , Dieta , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Distribución AleatoriaRESUMEN
BACKGROUND: We hypothesized that in Flanders (Belgium), the prevalence of at-risk genotypes for genotoxic effects decreases with age due to morbidity and mortality resulting from chronic diseases. Rather than polymorphisms in single genes, the interaction of multiple genetic polymorphisms in low penetrance genes involved in genotoxic effects might be of relevance. METHODS: Genotyping was performed on 399 randomly selected adults (aged 50-65) and on 442 randomly selected adolescents. Based on their involvement in processes relevant to genotoxicity, 28 low penetrance polymorphisms affecting the phenotype in 19 genes were selected (xenobiotic metabolism, oxidative stress defense and DNA repair, respectively 13, 6 and 9 polymorphisms). Polymorphisms which, based on available literature, could not clearly be categorized a priori as leading to an 'increased risk' or a 'protective effect' were excluded. RESULTS: The mean number of risk alleles for all investigated polymorphisms was found to be lower in the 'elderly' (17.0 ± 2.9) than the 'adolescent' (17.6 ± 3.1) subpopulation (P = 0.002). These results were not affected by gender nor smoking. The prevalence of a high (> 17 = median) number of risk alleles was less frequent in the 'elderly' (40.6%) than the 'adolescent' (51.4%) subpopulation (P = 0.002). In particular for phase II enzymes, the mean number of risk alleles was lower in the 'elderly' (4.3 ± 1.6 ) than the 'adolescent' age group (4.8 ± 1.9) P < 0.001 and the prevalence of a high (> 4 = median) number of risk alleles was less frequent in the 'elderly' (41.3%) than the adolescent subpopulation (56.3%, P < 0.001). The prevalence of a high (> 8 = median) number of risk alleles for DNA repair enzyme-coding genes was lower in the 'elderly' (37,3%) than the 'adolescent' subpopulation (45.6%, P = 0.017). CONCLUSIONS: These observations are consistent with the hypothesis that, in Flanders, the prevalence of at-risk alleles in genes involved in genotoxic effects decreases with age, suggesting that persons carrying a higher number of at risk alleles (especially in phase II xenobiotic-metabolizing or DNA repair genes) are at a higher risk of morbidity and mortality from chronic diseases. Our findings also suggest that, regarding risk of disease associated with low penetrance polymorphisms, multiple polymorphisms should be taken into account, rather than single ones.
Asunto(s)
Daño del ADN , Reparación del ADN , Genotipo , Polimorfismo Genético , Xenobióticos/toxicidad , Adolescente , Factores de Edad , Anciano , Alelos , Bélgica/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Penetrancia , Prevalencia , Medición de Riesgo , Xenobióticos/metabolismoRESUMEN
Metabolites of the human carcinogen 4-aminobiphenyl (4-ABP) form hemoglobin (Hb) adducts, which represent a useful biomarker for exposure. However, not every individual responds to a similar degree to 4-ABP exposure, and variations in 4-ABP-Hb adduct formation might be explained by genetic polymorphisms in genes coding for enzymes involved in 4-ABP metabolism. 4-ABP-Hb adducts were measured in blood samples from 57 smoking and 10 non-smoking volunteers. An association was found between cigarette smoking and 4-ABP-Hb adduct levels in smokers (R(2) = 0.5, P < 0.001). Subsequently, subjects were genotyped for 12 polymorphisms in seven genes involved in biotransformation reactions. From this selection of polymorphisms, a significant impact was found for the CYP1B1 Leu(432)Val polymorphism (P = 0.021), which has been reported to lead to a decrease in enzyme activity. Indeed higher levels of 4-ABP-Hb adducts were observed in homo- and heterozygous carriers of the CYP1B1 (432)Leu as compared to the double CYP1B1 (432)Val genotype. A significant interaction between these CYP1B1 genotypes and the level of exposure was found (P = 0.003). Noteworthy, a saturation effect was observed for 4-ABP-Hb adduct formation at high smoking doses limited to carriers of the CYP1B1 (432)Leu allele. No effect of polymorphisms in other genes were found. This is the first study in humans suggesting a crucial role of the CYP1B1 enzyme in 4-ABP metabolism, indicating a protective effect of the CYP1B1 Leu(432)Val polymorphism against the formation of 4-ABP-Hb adduct levels, depending on the smoking dose.
Asunto(s)
Compuestos de Aminobifenilo/metabolismo , Biomarcadores/metabolismo , Carcinógenos/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Fumar/genética , Adulto , Hidrocarburo de Aril Hidroxilasas , Biotransformación , Citocromo P-450 CYP1B1 , Aductos de ADN , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Hemoglobinas/metabolismo , Humanos , Masculino , Polimorfismo Genético , Factores de RiesgoRESUMEN
Primary human and rat hepatocyte cultures are well established in vitro systems used in toxicological studies. However, whereas transgenic mouse models provide an opportunity for studying mechanisms of toxicity, mouse primary hepatocyte cultures are less well described. The potential usefulness of a mouse hepatocyte-based in vitro model was assessed in this study by investigating time-dependent competence for xenobiotic metabolism and gene expression profiles. Primary mouse hepatocytes, isolated using two-step collagenase perfusion, were cultured in a collagen sandwich configuration. Gene expression profiles and the activities of various cytochrome P450 (P450) enzymes were determined after 0, 42, and 90 h in culture. Principal component analysis of gene expression profiles shows that replicates per time point are similar. Gene expression levels of most phase I biotransformation enzymes decrease to approximately 69 and 57% of the original levels at 42 and 90 h, respectively, whereas enzyme activities for most of the studied P450s decrease to 59 and 34%. The decrease for phase II gene expression is only to 96 and 92% of the original levels at 42 and 90 h, respectively. Pathway analysis reveals initial effects at the level of proteins, external signaling pathways, and energy production. Later effects are observed for transcription, translation, membranes, and cell cycle-related gene sets. These results indicate that the sandwich-cultured primary mouse hepatocyte system is robust and seems to maintain its metabolic competence better than that of the rat hepatocyte system.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Microsomas Hepáticos/metabolismo , Animales , Biotransformación , Células Cultivadas , Medios de Cultivo , Hepatocitos/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/enzimologíaRESUMEN
Vegetables may protect against colorectal cancer (CRC) via changes in gene expression involved in anticarcinogenic mechanisms. There is considerable evidence that aberrant DNA methylation plays an important role in carcinogenesis. Furthermore, DNA methylation can be affected by dietary components. Therefore, in the present study, we investigated the DNA methylation status of CpG dinucleotides within the promoter region of the four genes protein kinase C b 1, ornithine decarboxylase 1, fos proto-oncogene and 5,10-methylenetetrahydrofolate reductase in the colon of female sporadic adenoma patients and healthy controls. These genes were chosen because their expression was modulated in response to altered vegetable intake, they are functionally relevant for CRC; they have CpG islands in their promoter region, and a methylation-specific restriction enzyme is available to permit quantitative assay. No significant differences in extent of methylation in colon DNA were detected for any of the four genes in both adenoma polyp patients and healthy controls after altering vegetable intake. Interestingly, before the intervention, ornithine decarboxylase 1 promoter methylation was lower in the colonic mucosa of the adenoma polyp patients when compared with healthy control subjects, which may explain the increased ornithine decarboxylase 1 activity in CRC reported in the literature. In conclusion, we found no evidence that changes in promoter methylation were responsible for differences in expression of four genes in the human colonic mucosa in response to altered vegetable intake. The mechanism(s) responsible for this altered gene expression and, indeed, potential effects on methylation of other genes remain to be determined.
Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Islas de CpG/genética , Metilación de ADN , Verduras , Transformación Celular Neoplásica , ADN de Neoplasias/genética , Dieta , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Regiones Promotoras Genéticas , Proto-Oncogenes MasRESUMEN
Differences in biological responses to exposure to hazardous airborne substances between children and adults have been reported, suggesting children to be more susceptible. Aim of this study was to improve our understanding of differences in susceptibility in cancer risk associated with air pollution by comparing genome-wide gene expression profiles in peripheral blood of children and their parents. Gene expression analysis was performed in blood from children and parents living in two different regions in the Czech Republic with different levels of air pollution. Data were analyzed by two different approaches: one method first selected significantly differentially expressed genes and analyzed these gene lists for overrepresented biological processes, whereas the other applied the T-profiler tool to directly perform pathway analyses on the total gene set without preselection of significantly modulated gene expressions. In addition, gene expressions in both children and adults were investigated for associations with micronuclei frequencies. Both analysis approaches returned considerably more genes or gene groups and pathways that significantly differed between children from both regions than between parents. Very little overlap was observed between children and adults. The two most important biological processes or molecular functions significantly modulated in children, but not in adults, are nucleosome and immune response related. Our study suggests differences between children and adults in relation to air pollution exposure at the transcriptome level. The findings underline the necessity of implementing environmental health policy measures specifically for protecting children's health.
Asunto(s)
Contaminación del Aire , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Adulto , Niño , República Checa/epidemiología , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Núcleo Familiar , Padres , ARN/genética , Empalme del ARN/genética , Receptores de Quimiocina/genéticaRESUMEN
Cancer has been suggested to result from interactions between genetic and environmental factors, and certain subgroups in the general population may be at increased risk because of their relatively higher susceptibility to environmental carcinogens. The current study, part of a large biomonitoring study conducted in Flanders from 2002 to 2006 (The Flanders Environment and Health Survey), aims to determine these susceptible subpopulations based on multiple genotypic differences between individuals. A random selection of 429 adolescents and 361 adults was genotyped for 36 polymorphisms in 23 genes selected because of their known role in carcinogen metabolism, DNA repair, and oxidative stress. In both age groups, relationships between endogenous exposure to organochloride substances (polychlorinated biphenyl, hexachlorobenzene, dichlorodiphenyl dichloroethane), metals (cadmium, lead), and urinary metabolites (1-hydroxypyrene, trans-trans muconic acid) versus genotoxic effects (Comet assay and micronuclei in lymphocytes, and urinary 8-hydroxydeoxyguanosine) were investigated. In addition, in the study among adults, the relationship of these exposures with several tumor markers (prostate-specific antigen, carcinoembryonic antigen, and p53) was tested. The impact of the genotype on established exposure-effect relationships was evaluated. Eight exposure-effect relationships were found, including three novel associations, with an impact of various genotypes, predominantly affecting biotransformation and oxidative stress response. This study shows that at least part of the interindividual differences in relationships between carcinogen exposure and genotoxic effect can be explained by genotypic differences, enabling the identification of more susceptible subgroups for environmental cancer risks. This may be of relevance for environmental health policy setting.
Asunto(s)
Biomarcadores de Tumor/genética , Carcinógenos Ambientales , Monitoreo del Ambiente , Predisposición Genética a la Enfermedad , Adolescente , Adulto , Anciano , Bélgica/epidemiología , Reparación del ADN , Monitoreo Epidemiológico , Femenino , Genotipo , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Estrés Oxidativo , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Vigilancia de la Población , Fumar/epidemiología , Estadísticas no Paramétricas , Encuestas y CuestionariosRESUMEN
BACKGROUND: Human carcinogenesis is known to be initiated and/or promoted by exposure to chemicals that occur in the environment. Molecular cancer epidemiology is used to identify human environmental cancer risks by applying a range of effect biomarkers, which tend to be nonspecific and do not generate insights into underlying modes of action. Toxicogenomic technologies may improve on this by providing the opportunity to identify molecular biomarkers consisting of altered gene expression profiles. OBJECTIVES: The aim of the present study was to monitor the expression of selected genes in a random sample of adults in Flanders selected from specific regions with (presumably) different environmental burdens. Furthermore, associations of gene expression with blood and urinary measures of biomarkers of exposure, early phenotypic effects, and tumor markers were investigated. RESULTS: Individual gene expression of cytochrome p450 1B1, activating transcription factor 4, mitogen-activated protein kinase 14, superoxide dismutase 2 (Mn), chemokine (C-X-C motif) lig-and 1 (melanoma growth stimulating activity, alpha), diacylglycerol O-acyltransferase homolog 2 (mouse), tigger transposable element derived 3, and PTEN-induced putative kinase1 were measured by means of quantitative polymerase chain reaction in peripheral blood cells of 398 individuals. After correction for the confounding effect of tobacco smoking, inhabitants of the Olen region showed the highest differences in gene expression levels compared with inhabitants from the Gent and fruit cultivation regions. Importantly, we observed multiple significant correlations of particular gene expressions with blood and urinary measures of various environmental carcinogens. CONCLUSIONS: Considering the observed significant differences between gene expression levels in inhabitants of various regions in Flanders and the associations of gene expression with blood or urinary measures of environmental carcinogens, we conclude that gene expression profiling appears promising as a tool for biological monitoring in relation to environmental exposures in humans.
Asunto(s)
Biomarcadores de Tumor/sangre , Carcinógenos Ambientales/toxicidad , ARN Mensajero/sangre , Secuencia de Bases , Biomarcadores de Tumor/genética , Cartilla de ADN , Humanos , ARN Mensajero/genéticaRESUMEN
Although exposure to polycyclic aromatic hydrocarbons (PAHs) occurs mostly through mixtures, hazard and risk assessment are mostly based on the effects caused by individual compounds. The objective of the current study was to investigate whether interactions between PAHs occur, focusing on gene expression (as measured by cDNA microarrays) and DNA adduct formation. The effects of benzo[a]pyrene or dibenzo[a,h]anthracene (DB[a,h]A) alone and in binary mixtures with another PAH (DB[a,h]A, benzo[b]fluoranthene, fluoranthene or dibenzo[a,l]pyrene) were investigated using precision-cut rat liver slices. All compounds significantly modulated the expression of several genes, but overlap between genes affected by the mixture and by the individual compounds was relatively small. All mixtures showed an antagonistic response on total gene expression profiles. Moreover, at the level of individual genes, mostly antagonism was evident, with additivity and synergism observed for only a few genes. As far as DNA adduct formation is concerned, the binary mixtures generally caused antagonism. The effects in liver slices suggest a lower carcinogenic potency of PAH mixtures than estimated based on additivity of individual compounds.
Asunto(s)
Carcinógenos/toxicidad , Aductos de ADN/biosíntesis , Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Animales , Hígado/efectos de los fármacos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas WistarRESUMEN
Colorectal cancer (CRC) and lung cancer (LC) occur at high incidence, and both can be effectively prevented by dietary vegetable consumption. This makes these two types of cancer highly suitable for elucidating the underlying molecular mechanisms of cancer chemoprevention. Numerous studies have shown that vegetables exert their beneficial effects through various different mechanisms, but effects on the genome level remain mostly unclear. This review evaluates current knowledge on the mechanisms of CRC and LC prevention by vegetables, thereby focusing on the modulation of gene and protein expressions. The majority of the effects found in the colon are changes in the expression of genes and proteins involved in apoptosis, cell cycle, cell proliferation and intracellular defense, in favor of reduced CRC risk. Furthermore, vegetables and vegetable components changed the expression of many more genes and proteins involved in other pathways for which biologic meaning is less clear. The number of studies investigating gene and protein expression changes in the lungs is limited to only a few in vitro and animal studies. Data from these studies show that mostly genes involved in biotransformation, apoptosis and cell cycle regulation are affected. In both colon and lungs, genomewide analyses of gene and protein expression changes by new genomics and proteomics technologies, as well as the investigation of whole vegetables, are few in number. Further studies applying these 'omics' approaches are needed to provide more insights on affected genetic/biologic pathways and, thus, in molecular mechanisms by which different chemopreventive compounds can protect against carcinogenesis. Particularly studies with combinations of phytochemicals and whole vegetables are needed to establish gene expression changes in the colon, but especially in the lungs.