Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Cancer ; 152(7): 1438-1443, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36104949

RESUMEN

Immunotherapy with anti-PD1/PD-L1 is effective in only a subgroup of patients with malignant pleural mesothelioma (MPM). We investigated the efficacy of a combination of anti-PD1/PD-L1 and dendritic cell (DC) therapy to optimally induce effective anti-tumor immunity in MPM in both humans and mice. Data of nine MPM patients treated with DC therapy and sequential anti-PD1 treatment were collected and analyzed for progression-free survival (PFS) and overall survival (OS). Survival and T-cell responses were monitored in AC29 mesothelioma-bearing mice treated concurrently with the combination therapy; additionally, the role of the tumor-draining lymph node (TDLN) was investigated. The combination therapy resulted in a median OS and PFS of 17.7 and 8.0 months, respectively. Grade 3 to 4 treatment-related adverse events had not been reported. Survival of the mesothelioma-bearing mice treated with the combination therapy was longer than that of untreated mice, and coincided with improved T-cell activation in peripheral blood and less T-cell exhaustion in end stage tumors. Comparable results were obtained when solely the TDLN was targeted. We concluded that this combination therapy is safe and shows promising OS and PFS. The murine data support that PD-L1 treatment may reinvigorate the T-cell responses induced by DC therapy, which may primarily be the result of TDLN targeting.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Ratones , Animales , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Neoplasias Pulmonares/patología , Neoplasias Pleurales/terapia , Neoplasias Pleurales/patología , Mesotelioma/terapia , Mesotelioma/patología , Células Dendríticas
2.
Int J Cancer ; 150(4): 688-704, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34716584

RESUMEN

The surface inhibitory receptor NKG2A forms heterodimers with the invariant CD94 chain and is expressed on a subset of activated CD8 T cells. As antibodies to block NKG2A are currently tested in several efficacy trials for different tumor indications, it is important to characterize the NKG2A+ CD8 T cell population in the context of other inhibitory receptors. Here we used a well-controlled culture system to study the kinetics of inhibitory receptor expression. Naïve mouse CD8 T cells were synchronously and repeatedly activated by artificial antigen presenting cells in the presence of the homeostatic cytokine IL-7. The results revealed NKG2A as a late inhibitory receptor, expressed after repeated cognate antigen stimulations. In contrast, the expression of PD-1, TIGIT and LAG-3 was rapidly induced, hours after first contact and subsequently down regulated during each resting phase. This late, but stable expression kinetics of NKG2A was most similar to that of TIM-3 and CD39. Importantly, single-cell transcriptomics of human tumor-infiltrating lymphocytes (TILs) showed indeed that these receptors were often coexpressed by the same CD8 T cell cluster. Furthermore, NKG2A expression was associated with cell division and was promoted by TGF-ß in vitro, although TGF-ß signaling was not necessary in a mouse tumor model in vivo. In summary, our data show that PD-1 reflects recent TCR triggering, but that NKG2A is induced after repeated antigen stimulations and represents a late inhibitory receptor. Together with TIM-3 and CD39, NKG2A might thus mark actively dividing tumor-specific TILs.


Asunto(s)
Proteínas de Punto de Control Inmunitario/fisiología , Subfamília C de Receptores Similares a Lectina de Células NK/fisiología , Animales , Antígenos CD/fisiología , Linfocitos T CD8-positivos/inmunología , División Celular , Receptor 2 Celular del Virus de la Hepatitis A/fisiología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/fisiología , Receptores Inmunológicos/fisiología , Factor de Crecimiento Transformador beta/farmacología , Microambiente Tumoral , Proteína del Gen 3 de Activación de Linfocitos
3.
Sci Immunol ; 8(83): eabn6173, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37205768

RESUMEN

Despite the clinical success of immune checkpoint blockade (ICB), in certain cancer types, most patients with cancer do not respond well. Furthermore, in patients for whom ICB is initially successful, this is often short-lived because of the development of resistance to ICB. The mechanisms underlying primary or secondary ICB resistance are incompletely understood. Here, we identified preferential activation and enhanced suppressive capacity of regulatory T cells (Treg cells) in αPD-L1 therapy-resistant solid tumor-bearing mice. Treg cell depletion reversed resistance to αPD-L1 with concomitant expansion of effector T cells. Moreover, we found that tumor-infiltrating Treg cells in human patients with skin cancer, and in patients with non-small cell lung cancer, up-regulated a suppressive transcriptional gene program after ICB treatment, which correlated with lack of treatment response. αPD-1/PD-L1-induced PD-1+ Treg cell activation was also seen in peripheral blood of patients with lung cancer and mesothelioma, especially in nonresponders. Together, these data reveal that treatment with αPD-1 and αPD-L1 unleashes the immunosuppressive role of Treg cells, resulting in therapy resistance, suggesting that Treg cell targeting is an important adjunct strategy to enhance therapeutic efficacy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias Cutáneas , Humanos , Ratones , Animales , Linfocitos T Reguladores , Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico
4.
Mol Cancer Ther ; 21(9): 1393-1405, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35732501

RESUMEN

Terminal T-cell exhaustion poses a significant barrier to effective anticancer immunotherapy efficacy, with current drugs aimed at reversing exhaustion being limited. Recent investigations into the molecular drivers of T-cell exhaustion have led to the identification of chronic IL2 receptor (IL2R)-STAT5 pathway signaling in mediating T-cell exhaustion. We targeted the key downstream IL2R-intermediate JAK 3 using a clinically relevant highly specific JAK3-inhibitor (JAK3i; PF-06651600) that potently inhibited STAT5-phosphorylation in vitro. Whereas pulsed high-dose JAK3i administration inhibited antitumor T-cell effector function, low-dose chronic JAK3i significantly improved T-cell responses and decreased tumor load in mouse models of solid cancer. Low-dose JAK3i combined with cellular and peptide vaccine strategies further decreased tumor load compared with both monotherapies alone. Collectively, these results identify JAK3 as a novel and promising target for combination immunotherapy.


Asunto(s)
Inmunoterapia , Janus Quinasa 3 , Neoplasias , Linfocitos T , Animales , Janus Quinasa 3/antagonistas & inhibidores , Ratones , Neoplasias/terapia , Fosforilación , Receptores de Interleucina-2/metabolismo , Factor de Transcripción STAT5/metabolismo , Linfocitos T/inmunología
5.
EBioMedicine ; 64: 103160, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33516644

RESUMEN

BACKGROUND: Gemcitabine is a frequently used chemotherapeutic agent but its effects on the immune system are incompletely understood. Recently, the randomized NVALT19-trial revealed that maintenance gemcitabine after first-line chemotherapy significantly prolonged progression-free survival (PFS) compared to best supportive care (BSC) in malignant mesothelioma. Whether these effects are paralleled by changes in circulating immune cell subsets is currently unknown. These analyses could offer improved mechanistic insights into the effects of gemcitabine on the host and guide development of effective combination therapies in mesothelioma. METHODS: We stained peripheral blood mononuclear cells (PBMCs) and myeloid-derived suppressor cells (MDSCs) at baseline and 3 weeks following start of gemcitabine or BSC treatment in a subgroup of mesothelioma patients included in the NVALT19-trial. In total, 24 paired samples including both MDSCs and PBMCs were included. We performed multicolour flow-cytometry to assess co-inhibitory and-stimulatory receptor- and cytokine expression and matched these parameters with PFS and OS. FINDINGS: Gemcitabine treatment was significantly associated with an increased NK-cell- and decreased T-regulatory cell proliferation whereas the opposite occurred in control patients. Furthermore, myeloid-derived suppressor cells (MDSCs) frequencies were lower in gemcitabine-treated patients and this correlated with increased T-cell proliferation following treatment. Whereas gemcitabine variably altered co-inhibitory receptor expression, co-stimulatory molecules including ICOS, CD28 and HLA-DR were uniformly increased across CD4+ T-helper, CD8+ T- and NK-cells. Although preliminary in nature, the increase in NK-cell proliferation and PD-1 expression in T cells following gemcitabine treatment was associated with improved PFS and OS. INTERPRETATION: Gemcitabine treatment was associated with widespread effects on circulating immune cells of mesothelioma patients with responding patients displaying increased NK-cell and PD-1 + T-cell proliferation. These exploratory data provide a platform for future on treatment-biomarker development and novel combination treatment strategies.


Asunto(s)
Desoxicitidina/análogos & derivados , Inmunomodulación/efectos de los fármacos , Mesotelioma/inmunología , Monitorización Inmunológica , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Citocinas/metabolismo , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Humanos , Inmunosupresores/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Mesotelioma/diagnóstico , Mesotelioma/tratamiento farmacológico , Mesotelioma/mortalidad , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Pronóstico , Resultado del Tratamiento , Gemcitabina
6.
J Immunother Cancer ; 8(2)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32690771

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is notoriously resistant to treatment including checkpoint-blockade immunotherapy. We hypothesized that a bimodal treatment approach consisting of dendritic cell (DC) vaccination to prime tumor-specific T cells, and a strategy to reprogram the desmoplastic tumor microenvironment (TME) would be needed to break tolerance to these pancreatic cancers. As a proof-of-concept, we investigated the efficacy of combined DC vaccination with CD40-agonistic antibodies in a poorly immunogenic murine model of PDAC. Based on the rationale that mesothelioma and pancreatic cancer share a number of tumor associated antigens, the DCs were loaded with either pancreatic or mesothelioma tumor lysates. METHODS: Immune-competent mice with subcutaneously or orthotopically growing KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) PDAC tumors were vaccinated with syngeneic bone marrow-derived DCs loaded with either pancreatic cancer (KPC) or mesothelioma (AE17) lysate and consequently treated with FGK45 (CD40 agonist). Tumor progression was monitored and immune responses in TME and lymphoid organs were analyzed using multicolor flow cytometry and NanoString analyzes. RESULTS: Mesothelioma-lysate loaded DCs generated cross-reactive tumor-antigen-specific T-cell responses to pancreatic cancer and induced delayed tumor outgrowth when provided as prophylactic vaccine. In established disease, combination with stimulating CD40 antibody was necessary to improve survival, while anti-CD40 alone was ineffective. Extensive analysis of the TME showed that anti-CD40 monotherapy did improve CD8 +T cell infiltration, but these essential effector cells displayed hallmarks of exhaustion, including PD-1, TIM-3 and NKG2A. Combination therapy induced a strong change in tumor transcriptome and mitigated the expression of inhibitory markers on CD8 +T cells. CONCLUSION: These results demonstrate the potency of DC therapy in combination with CD40-stimulation for the treatment of pancreatic cancer and provide directions for near future clinical trials.


Asunto(s)
Adenocarcinoma/terapia , Vacunas contra el Cáncer/uso terapéutico , Carcinoma Ductal Pancreático/terapia , Células Dendríticas/metabolismo , Adenocarcinoma/patología , Animales , Vacunas contra el Cáncer/farmacología , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones
7.
Cancer Cell ; 38(5): 685-700.e8, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33007259

RESUMEN

PD-1/PD-L1-checkpoint blockade therapy is generally thought to relieve tumor cell-mediated suppression in the tumor microenvironment but PD-L1 is also expressed on non-tumor macrophages and conventional dendritic cells (cDCs). Here we show in mouse tumor models that tumor-draining lymph nodes (TDLNs) are enriched for tumor-specific PD-1+ T cells which closely associate with PD-L1+ cDCs. TDLN-targeted PD-L1-blockade induces enhanced anti-tumor T cell immunity by seeding the tumor site with progenitor-exhausted T cells, resulting in improved tumor control. Moreover, we show that abundant PD-1/PD-L1-interactions in TDLNs of nonmetastatic melanoma patients, but not those in corresponding tumors, associate with early distant disease recurrence. These findings point at a critical role for PD-L1 expression in TDLNs in governing systemic anti-tumor immunity, identifying high-risk patient groups amendable to adjuvant PD-1/PD-L1-blockade therapy.


Asunto(s)
Antígeno B7-H1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Ganglios Linfáticos/inmunología , Melanoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/inmunología , Adulto , Animales , Antígeno B7-H1/antagonistas & inhibidores , Línea Celular Tumoral , Células Dendríticas/inmunología , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ganglios Linfáticos/efectos de los fármacos , Masculino , Melanoma/inmunología , Melanoma/patología , Ratones , Persona de Mediana Edad , Estadificación de Neoplasias , Linfocitos T/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Front Immunol ; 9: 2759, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568653

RESUMEN

Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the activation of immune responses. In various malignancies, these immunostimulatory properties are exploited by DC-therapy, aiming at the induction of effective anti-tumor immunity by vaccination with ex vivo antigen-loaded DCs. Depending on the type of DC-therapy used, long-term clinical efficacy upon DC-therapy remains restricted to a proportion of patients, likely due to lack of immunogenicity of tumor cells, presence of a stromal compartment, and the suppressive tumor microenvironment (TME), thereby leading to the development of resistance. In order to circumvent tumor-induced suppressive mechanisms and unleash the full potential of DC-therapy, considerable efforts have been made to combine DC-therapy with chemotherapy, radiotherapy or with checkpoint inhibitors. These combination strategies could enhance tumor immunogenicity, stimulate endogenous DCs following immunogenic cell death, improve infiltration of cytotoxic T lymphocytes (CTLs) or specifically deplete immunosuppressive cells in the TME, such as regulatory T-cells and myeloid-derived suppressor cells. In this review, different strategies of combining DC-therapy with immunomodulatory treatments will be discussed. These strategies and insights will improve and guide DC-based combination immunotherapies with the aim of further improving patient prognosis and care.


Asunto(s)
Células Dendríticas/inmunología , Inmunización/métodos , Neoplasias/terapia , Animales , Antígenos de Neoplasias/inmunología , Muerte Celular/inmunología , Terapia Combinada/métodos , Células Dendríticas/patología , Humanos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Microambiente Tumoral/inmunología
9.
Inflamm Bowel Dis ; 24(8): 1755-1767, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29796655

RESUMEN

Background: Mesenchymal stromal cells (MSCs) are a potential therapeutic modality in inflammatory bowel diseases (IBDs) because of their immunomodulatory and regenerative properties. However, when injected systemically, only a small portion of the cells, if any, reach the inflamed colon. In this study, we assessed whether endoscopic injections of MSCs into the intestinal wall of the inflamed colon affect the course of experimental colitis. Furthermore, we investigated if injection of aggregated MSCs in spheroids could enhance their therapeutic ability. Methods: Expression levels of in vivo MSC aggregates and in vitro MSC spheroids were compared with monolayer cultured MSCs for both anti-inflammatory and pro-regenerative factors. Subsequently, MSCs and MSC spheroids were injected endoscopically in mice with established dextran sulfate sodium (DSS)-induced colitis. Results: Endoscopically injected MSCs and MSC spheroids both alleviated DSS-induced colitis. Furthermore, both in vivo and in vitro MSC spheroids showed increased expression of factors important for immunomodulation and tissue repair, compared with monolayer cultured MSCs. Despite differential expression of these factors, MSC spheroids showed similar clinical efficacy in vivo as single-cell suspension MSCs. Analysis of serum samples and colon homogenates showed that local MSC therapy resulted in increased levels of interferon-γ, indoleamine 2,3-dixoygenase, and interleukin-10. Conclusions: Endoscopic injections of MSCs and MSC spheroids in the inflamed colon attenuate DSS-induced colitis. Our data show that endoscopic injection can be a feasible and effective novel application route for MSC therapy in patients with luminal IBD.


Asunto(s)
Colitis/terapia , Colon/patología , Citocinas/metabolismo , Inflamación/terapia , Trasplante de Células Madre Mesenquimatosas , Animales , Células Cultivadas , Colitis/inducido químicamente , Colon/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Esferoides Celulares/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA