Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Endocrinology ; 146(3): 1418-27, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15550511

RESUMEN

Type II deiodinase (D2) plays a key role in regulating thyroid hormone-dependent processes in, among others, the central nervous system (CNS) by accelerating the intracellular conversion of T4 into active T3. Just like the well-known daily rhythm of the hormones of the hypothalamo-pituitary-thyroid axis, D2 activity also appears to show daily variations. However, the mechanisms involved in generating these daily variations, especially in the CNS, are not known. Therefore, we decided to investigate the role the master biological clock, located in the hypothalamus, plays with respect to D2 activity in the rat CNS as well as the role of one of its main hormonal outputs, i.e. plasma corticosterone. D2 activity showed a significant daily rhythm in the pineal and pituitary gland as well as hypothalamic and cortical brain tissue, albeit with a different timing of its acrophase in the different tissues. Ablation of the biological clock abolished the daily variations of D2 activity in all four tissues studied. The main effect of the knockout of the suprachiasmatic nuclei (SCN) was a reduction of nocturnal peak levels in D2 activity. Moreover, contrary to previous observations in SCN-intact animals, in SCN-lesioned animals, the decreased levels of D2 activity are accompanied by decreased plasma levels of the thyroid hormones, suggesting that the SCN separately stimulates D2 activity as well as the hypothalamo-pituitary-thyroid axis.


Asunto(s)
Encéfalo/enzimología , Yoduro Peroxidasa/metabolismo , Núcleo Supraquiasmático/enzimología , Corticoesteroides/sangre , Animales , Relojes Biológicos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Corticosterona/sangre , Masculino , Hipófisis/metabolismo , Ratas , Ratas Wistar , Hormonas Tiroideas/metabolismo , Tiroxina/metabolismo , Factores de Tiempo , Triyodotironina/metabolismo , Yodotironina Deyodinasa Tipo II
2.
Epilepsia ; 47(4): 672-80, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16650133

RESUMEN

PURPOSE: Overexpression of multidrug transporters such as P-glycoprotein (P-gp) may play a significant role in pharmacoresistance, by preventing antiepileptic drugs (AEDs) from reaching their targets in the brain. Until now, many studies have described increased P-gp expression in epileptic tissue or have shown that several AEDs act as substrates for P-gp. However, definitive proof showing the functional involvement of P-gp in pharmacoresistance is still lacking. Here we tested whether P-gp contributes to pharmacoresistance to phenytoin (PHT) by using a specific P-gp inhibitor in a model of spontaneous seizures in rats. METHODS: The effects of PHT on spontaneous seizure activity were investigated in the electrical post-status epilepticus rat model for temporal lobe epilepsy, before and after administration of tariquidar (TQD), a selective inhibitor of P-gp. RESULTS: A 7-day treatment with therapeutic doses of PHT suppressed spontaneous seizure activity in rats, but only partially. However, an almost complete control of seizures by PHT (93 +/- 7%) was obtained in all rats when PHT was coadministered with TQD. This specific P-gp inhibitor was effective in improving the anticonvulsive action of PHT during the first 3-4 days of the treatment. Western blot analysis confirmed P-gp upregulation in epileptic brains (140-200% of control levels), along with approximately 20% reduced PHT brain levels. Inhibition of P-gp by TQD significantly increased PHT brain levels in chronic epileptic rats. CONCLUSIONS: These findings show that TQD significantly improves the anticonvulsive action of PHT, thus establishing a proof-of-concept that the administration of AEDs in combination with P-gp inhibitors may be a promising therapeutic strategy in pharmacoresistant patients.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Anticonvulsivantes/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Epilepsia del Lóbulo Temporal/prevención & control , Fenitoína/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/fisiología , Animales , Anticonvulsivantes/metabolismo , Anticonvulsivantes/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Resistencia a Múltiples Medicamentos/fisiología , Quimioterapia Combinada , Electrodos Implantados , Electroencefalografía/efectos de los fármacos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Masculino , Fenitoína/metabolismo , Fenitoína/uso terapéutico , Quinolinas/metabolismo , Quinolinas/farmacología , Quinolinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba , Grabación de Cinta de Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA