RESUMEN
Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.
Asunto(s)
Clima , Orchidaceae , Australia , Filogenia , Filogeografía , Orchidaceae/genéticaRESUMEN
Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests.
Asunto(s)
Biodiversidad , Bases de Datos Factuales , Plantas/clasificación , Bosque Lluvioso , BrasilRESUMEN
Clusieae is an exclusively Neotropical tribe in the family Clusiaceae sensu stricto. Although tribes within Clusiaceae are morphologically and phylogenetically well-delimited, resolution among genera within these tribes remains elusive. The tribe Clusieae includes an estimated â¼500 species distributed among five genera: Chrysochlamys, Clusia, Dystovomita, Tovomita, and Tovomitopsis. In this study, we used nearly complete plastid genomes from 30 exemplar Clusieae species representing all genera recognized, plus two outgroups to infer the phylogeny of the tribe using Maximum Likelihood and Bayesian Inference. For comparison, we also inferred a phylogeny from the nuclear Internal Transcribed Spacer (ITS) region using the same methods. Our study corroborates earlier findings that Clusia is monophyletic while Tovomita is not. It also provides additional support to the hypothesis that Chrysochlamys and Tovomitopsis are not closely related despite gross morphological similarity. Tovomita is divided into three distantly related clades: (i) core Tovomita (including the type T. guianensis), (ii) T. croatii, and (iii) the T. weddelliana species complex. Members of the T. weddelliana complex are isolated from the core Tovomita, and placed in a well-supported clade that is sister to a clade composed of Chrysochlamys plus Clusia. Tovomita croatii is nested within Chrysochlamys. We propose taxonomic revisions to accommodate our phylogenetic findings, including the description of the new genus Arawakia, which includes the 18 species formerly recognized in the T. weddelliana species complex. Lectotypes are also designated for nine species (i.e., Arawakia angustata, A. lanceolata, A. lingulata, A. longicuneata, A. macrocarpa, A. oblanceolata, A. pithecobia, A. rhizophoroides, and A. weddelliana), and a taxonomic key for the identification of the six genera of Clusieae recognized is presented.
Asunto(s)
Clusiaceae/genética , Genoma de Plastidios , Teorema de Bayes , Clusiaceae/anatomía & histología , Flores/anatomía & histología , Frutas/anatomía & histología , Funciones de Verosimilitud , FilogeniaRESUMEN
Eremitis, Pariana, and Parianella are herbaceous bamboos (tribe Olyreae) included in the subtribe Parianinae, which is characterized by the presence of fimbriae at the apex of the leaf sheaths and exclusively spiciform synflorescences. We analyzed 43 samples of herbaceous and woody bamboos in order to infer relationships within the Parianinae, based on combined data from the nuclear ribosomal internal transcribed spacer (ITS) and plastid DNA (rpl32-trnL and trnD-trnT spacers). Bayesian inference, maximum likelihood, and maximum parsimony methods were applied, and macro- and micromorphological aspects were also analyzed, including the ectexine patterns of pollen grains. Parianinae is represented by three well-supported lineages in our analyses: (1) Parianella, endemic to southern Bahia, Brazil; (2) Pariana sensu stricto with a broad distribution in southern Central America and northern South America, especially in the Amazon region; and (3) Eremitis, endemic to the Brazilian Atlantic Forest, from the states of Pernambuco to Rio de Janeiro, including one species previously described as a member of Pariana. Our molecular phylogeny showed that Pariana, as historically circumscribed, is not monophyletic, by recovering Pariana sensu stricto as strongly supported and sister to Eremitisâ¯+â¯Pariana multiflora, with Parianella sister to the Pariana-Eremitis clade. Morphological features of their synflorescences and differences in ectexine patterns characterize each lineage. Based on all these characters and the phylogenetic results, Pariana multiflora, endemic to the state of Espírito Santo, Brazil, is transferred to Eremitis.
Asunto(s)
Poaceae/clasificación , Teorema de Bayes , Brasil , Núcleo Celular/genética , América Central , ADN de Plantas/química , Filogenia , Plastidios/genética , Poaceae/anatomía & histología , Poaceae/genética , Poaceae/ultraestructura , Polen/ultraestructura , Análisis de Secuencia de ADN , América del SurRESUMEN
Echinolaena and Ichnanthus are two tropical grass genera distributed mostly in the Americas, characterized by the presence of rachilla appendages in the shape of convex swellings, scars or wings at the base of the upper anthecium. However, recent studies have shown that rachilla appendages arose several times independently in several groups within Paniceae and Paspaleae (Panicoideae). Thus, this study aimed to assess the monophyly of Echinolaena and Ichnanthus and their relationship to other genera of Paniceae and Paspaleae, especially those including species with rachilla appendages. Parsimony and Bayesian analyses of the cpDNA regions ndhF, rpl16, trnH-(rps19)-psbA, trnL-trnF, trnS-(psbZ)-trnG, and the rDNA ITS region included 29 of the 39 known species of Echinolaena and Ichnanthus, 23 of which were sampled for the first time. The multiple loci analyses indicated that Echinolaena and Ichnanthus are polyphyletic in their current circumscriptions, with species in four distinct lineages within subtribe Paspalinae, each one characterized by a single type of rachilla appendage. Thus, Echinolaena and Ichnanthus are each circumscribed in a narrow sense, and the other two lineages excluded from them are proposed as the new genera Hildaea and Oedochloa, resulting in 15 new combinations and the restablishment of I. oplismenoides Munro ex Döll.
Asunto(s)
Poaceae/clasificación , Teorema de Bayes , ADN de Cloroplastos/genética , ADN de Cloroplastos/aislamiento & purificación , Evolución Molecular , Genes de Plantas , Filogenia , Poaceae/genética , Análisis de Secuencia de ADNRESUMEN
The plastid spacer trnD-trnT and the nuclear ribosomal internal transcribed spacer (ITS) were sequenced for 37 samples of herbaceous bamboos (Poaceae: Olyreae), including all Raddia species and allied genera, as well as two members of the woody bamboos (tribes Bambuseae and Arundinarieae), in order to examine their relationships. The sequences were analyzed using maximum parsimony and Bayesian inference. Both the individual and combined analyses of ITS and trnD-trnT supported Olyreae as a monophyletic group. All species of Raddia also formed a well-supported monophyletic group, and combined datasets allowed us to outline some relationships within this group. Individual analyses indicated incongruence regarding the sister group of Raddia, with ITS data weakly indicating Raddiella malmeana whereas trnD-trnT data supported Sucrea maculata in this position. However, the combined analysis supported Sucrea as sister to Raddia, although the monophyly of Sucrea is not well supported. Parodiolyra is paraphyletic to Raddiella in all analyses; Olyra is also paraphyletic, with species of Lithachne, Arberella and Cryptochloa nested within it. Eremitis and Pariana appeared as an isolated clade within Olyreae, and the position of the New Guinean Buergersiochloa remains uncertain within this tribe.
Asunto(s)
Filogenia , Poaceae/clasificación , Teorema de Bayes , ADN de Plantas/química , ADN Espaciador Ribosómico/química , Plastidios/genética , Poaceae/anatomía & histología , Poaceae/genética , Análisis de Secuencia de ADNRESUMEN
⢠Premise of the study: Knowledge about genetic variability in plant populations is one of the main branches of conservation genetics, linking genetic data to conservation strategies. Vriesea minarum is a bromeliad endemic to the Iron Quadrangle region (southeastern Brazil), occurring on mountaintop rock outcrops. It is listed as endangered due to habitat loss, particularly from iron ore mining. Thus, determining the structure and genetic diversity of V. minarum populations could help develop strategies to conserve the species.⢠Methods: We studied the genetic structure of 12 populations of V. minarum using 10 microsatellite loci transferred from other species of Bromeliaceae. Statistical analyses to compare and describe the genetic diversity of each population were performed, and genetic structure within and among populations, isolation by distance, and Bayesian structure were also analyzed.⢠Key results: Our results show high inbreeding (GIS = 0.376) and low population structure (FST = 0.088), possibly related to high gene flow due to great pollinator efficiency and/or efficient seed dispersal, thus leading to high connectivity among populations of these fragmented rock outcrops. Two clusters were observed, corresponding to the basins of rivers São Francisco and Doce.⢠Conclusions: Gene flow among populations is high but, given the rate of habitat loss to mining, most populations are vulnerable and will become increasingly isolated if no action is taken to preserve them. Thus, conservation of this species depends on in situ and ex situ actions, such as controlling overexploitation and creating a germoplasm bank.
RESUMEN
The Atlantic Forest is a phytogeographic domain with a high rate of endemism and large species diversity. The Sapotaceae is a botanical family for which species identification in the Atlantic Forest is difficult. An approach that facilitates species identification in the Sapotaceae is urgently needed because this family includes threatened species and valuable timber species. In this context, DNA barcoding could provide an important tool for identifying species in the Atlantic Forest. In this work, we evaluated four plant barcode markers (matK, rbcL, trnH-psbA and the nuclear ribosomal internal transcribed spacer region - ITS) in 80 samples from 26 species of Sapotaceae that occur in the Atlantic Forest. ITS yielded the highest average interspecific distance (0.122), followed by trnH-psbA (0.019), matK (0.008) and rbcL (0.002). For species discrimination, ITS provided the best results, followed by matK, trnH-psbA and rbcL. Furthermore, the combined analysis of two, three or four markers did not result in higher rates of discrimination than obtained with ITS alone. These results indicate that the ITS region is the best option for molecular identification of Sapotaceae species from the Atlantic Forest.
RESUMEN
Prosthechea jauana has been recognized as an orchid species endemic to the Venezuelan tepui. The first record of P. jauana in Brazil is presented here, also from a tepui in the Southern phytogeographical district of Pantepui in the Serra do Aracá, at the northern border of the Amazonas state. A detailed morphological description and images of the specimen are presented, as well as an updated distribution map, preliminary conservation status assessment, and taxonomic notes about the species. In addition, we provide species' distribution models for P. jauana based on current and future bioclimatic data. Future projections suggest that the geographic distribution of P. jauana will likely be severely affected, with ~79% of its suitable habitat being reduced by 2041-2060 and ~92% by 2061-2080. Prosthechea jauana could represent a flag species and an example of how climate change may affect the endemic Pantepui flora.
RESUMEN
We present a molecular phylogeny for the subtribe Ecliptinae (Asteraceae, Heliantheae) based on three plastid (matK, psbA-trnH, and trnQ-rps16) and two nuclear (nrITS and nrETS) markers. The results of the phylogenetic reconstruction were utilised as a topological constraint for a subsequent divergence dating analysis and ancestral range reconstructions. We sampled 41 species and 40 genera (72%) of Ecliptinae and two species of Montanoa (as outgroups) to elucidate the generic relationships between the genera of this subtribe. The Bayesian inference (BI) and Maximum Likelihood (ML) analyses were performed for the combined molecular dataset. The divergence dating analysis was performed using a relaxed, uncorrelated molecular clock with BEAST v1.8.4 and calibrated using a single secondary calibration point from a recently published chronogram for the family. The ancestral range reconstructions focusing on continents (i.e., South America, North America, Africa, Asia, and Oceania) and biomes (Dry forests, Altitudinal grasslands, Savannas, and Rainforests) were performed on BioGeoBEARS. Our phylogenetic results indicate that the genera of Ecliptinae are grouped into five clades, informally named the Monactis, Oblivia, Blainvillea, Wedelia, and Melanthera clades. The most recent, common ancestor of Ecliptinae was widespread in the North and South American dry forests at 8.16 Ma and mainly radiated in these regions up to the Pleistocene. At least eight dispersal events to South America and four dispersal events from North America to Africa, Asia, and Oceania took place during this period in all five informal clades of Ecliptinae. At least 13 biome shifts from dry forests to rainforests were evidenced, in addition to ten biome shifts from dry forests to altitudinal grasslands and savannas. These results corroborate the mid-late Miocene to early Pleistocene radiation of Ecliptinae in tropical dry forests. Future studies should aim to sample the remaining 14 unsampled genera of Ecliptinae to position them in one of the five informal clades proposed in this study.
RESUMEN
Habenaria is a large genus of terrestrial orchids distributed throughout the tropical and subtropical regions of the world. The integrity and monophyly of this genus have been under discussion for many years, and at one time or another, several genera have been either included in a broadly defined Habenaria or segregated from it. In this study, the phylogenetic relationships of the Neotropical members of the genus and selected groups of African Habenaria were investigated using DNA sequences from the nuclear internal transcribed spacer (ITS) region and the plastid matK gene sampled from 151 taxa of Habenaria from the Neotropics (ca. 51% of the total) as well as 20 species of Habenaria and Bonatea from the Old World. Bayesian and parsimony trees were congruent with each other, and in all analyses, the Neotropical species formed a highly supported group. African species of Habenaria in sections Dolichostachyae, Podandria, Diphyllae, Ceratopetalae and Bilabrellae, and the Neotropical clade formed a highly supported "core Habenaria clade", which includes the type species of the genus from the New World. The topology of the trees indicates an African origin for the Neotropical clade and the low sequence divergence among the Neotropical species suggests a recent radiation of the genus in the New World. Species of Bonatea and Habenaria sections Chlorinae and Multipartitae formed a well-supported clade that was sister to the "core Habenaria clade". The Neotropical clade consists of at least 21 well-supported subgroups, but all Neotropical sections of the current sectional classification are paraphyletic or polyphyletic and will need extensive revision and recircumscription. Most of the Neotropical subgroups formed morphologically uniform assemblage of species, but some cases of morphological divergence within subgroups and convergence between subgroups indicated that morphology alone can be misleading for inferring relationships within the genus. The genera Bertauxia, Kusibabella and Habenella, segregated from New World Habenaria, are not monophyletic and a revision of the sectional classification rather than a generic division seems most appropriate. Our results do not support an extensive generic fragmentation of Habenaria as previously suggested and will provide a framework for revising the infrageneric classification and investigating the patterns of morphological evolution and geographical distribution of the genus in the New World.
Asunto(s)
Evolución Biológica , Orchidaceae/clasificación , Filogenia , Teorema de Bayes , Núcleo Celular/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Funciones de Verosimilitud , Modelos Genéticos , Orchidaceae/genética , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
PREMISE OF STUDY: Flowering traits can sometimes be overemphasized in taxonomic classifications. The fused and completely differentiated papilionate floral organs in the neotropical legume trees Vatairea and Vataireopsis were traditionally used in part to ascribe these genera to the tribe Dalbergieae. In contrast, the free and mostly undifferentiated floral parts of Luetzelburgia and Sweetia fit the circumscription of the "primitive" Sophoreae. Such divergent floral morphologies thought to divide deep phylogenetic lineages indeed may be prone to episodic transformation among close papilionoid relatives. METHODS: We sampled 26 of 27 known species of Luetzelburgia, Sweetia, Vatairea, and Vataireopsis in parsimony and Bayesian phylogenetic analyses of nuclear ribosomal ITS/5.8S and six plastid (matK, 3'-trnK, psbA-trnH, trnL intron, rps16 intron, and trnD-T) DNA sequence loci. KEY RESULTS: The analyses of individual and combined data sets strongly resolved the monophyly of each of Luetzelburgia, Sweetia, Vatairea, and Vataireopsis. Vataireopsis was resolved as sister to the rest and the morphologically divergent Luetzelburgia and Vatairea were strongly resolved as sister clades. Floral morphology was generally not a good predictor of phylogenetic relatedness. CONCLUSIONS: Luetzelburgia, Sweetia, Vatairea, and Vataireopsis are unequivocally resolved as the "vataireoid" clade. Fruit and vegetative traits are found to be more phylogenetically conserved than many floral traits. This explains why the identity of the vataireoids has been overlooked or confused. The evolvability of floral traits may also be a general condition among many of the early-branching papilionoid lineages.
Asunto(s)
ADN de Cloroplastos/química , Fabaceae/genética , Flores/anatomía & histología , Filogenia , Evolución Biológica , ADN Intergénico/química , Fabaceae/anatomía & histología , Fabaceae/químicaRESUMEN
The Arecaceae family has a worldwide distribution, especially in tropical and subtropical regions. We sequenced the chloroplast genomes of Acrocomia intumescens and A. totai, widely used in the food and energy industries; Bactris gasipaes, important for palm heart; Copernicia alba and C. prunifera, worldwide known for wax utilization; and Syagrus romanzoffiana, of great ornamental potential. Copernicia spp. showed the largest chloroplast genomes (C. prunifera: 157,323 bp and C. alba: 157,192 bp), while S. romanzoffiana and B. gasipaes var. gasipaes presented the smallest (155,078 bp and 155,604 bp). Structurally, great synteny was detected among palms. Conservation was also observed in the distribution of single sequence repeats (SSR). Copernicia spp. presented less dispersed repeats, without occurrence in the small single copy (SSC). All RNA editing sites were C (cytidine) to U (uridine) conversions. Overall, closely phylogenetically related species shared more sites. Almost all nodes of the phylogenetic analysis showed a posterior probability (PP) of 1.0, reaffirming the close relationship between Acrocomia species. These results elucidate the conservation among palm chloroplast genomes, but point to subtle structural changes, providing support for the evolutionary dynamics of the Arecaceae family.
Asunto(s)
Arecaceae , Genoma del Cloroplasto , Filogenia , Arecaceae/genética , Arecaceae/químicaRESUMEN
BACKGROUND AND AIMS: Capanemia Barb. Rodr. comprises seven species that mostly inhabit the Brazilian Atlantic Rain Forest domain. The genus currently consists of two sections: Capanemia Cogn. and Planifolia Pabst, distinguished on the basis of leaf shape. We compare the floral morphology and anatomy of all species to determine whether separation into sections is supported by floral characters. METHODS: Both fresh flowers and herbarium specimens were investigated, and column and pollinarium features, together with the presence or absence of floral rewards, recorded. Anatomical features were examined using both light microscopy and scanning electron microscopy. KEY RESULTS AND CONCLUSIONS: With the sole exception of Capanemia therezae, all species shared a distinctive set of floral characters. Flowers were mostly white or yellowish-white and fragrant, and column wings were positioned parallel to the labellum, concealing the stigmatic cavity. Pollinaria had proportionally long tegular stipes and clavate to reniform pollinia, whereas the labellum possessed a conspicuous indument of trichomes, but was devoid of nectar or any other secretion that might function as a food-reward. Capanemia therezae, however, was exceptional in having greenish, unscented flowers with short, rounded and divergent column wings and an exposed stigmatic cavity. Its pollinaria had proportionally short tegular stipes and round pollinia, whereas the labellum lacked trichomes. Droplets of nectar were evident on the adaxial surface of the labellum, adjacent to the callus. Floral features did not support the currently accepted sectional division of Capanemia. If ongoing phylogenetic studies demonstrate that both sections are indeed monophyletic, then these taxa should be distinguished solely on the basis of foliar features.
Asunto(s)
Orchidaceae/clasificación , Brasil , Flores/anatomía & histología , Flores/ultraestructura , Microscopía Electrónica de Rastreo , Orchidaceae/anatomía & histología , Orchidaceae/genética , Orchidaceae/ultraestructura , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/ultraestructuraRESUMEN
PREMISE OF THE STUDY: Microsatellite markers for Masdevallia solomonii were developed to serve as a tool in future population genetic studies of this threatened species from the Bolivian Yungas. METHODS AND RESULTS: Thirteen microsatellite primers were characterized by cloning an intersimple sequence repeat (ISSR) library. From these, 10 loci presented considerable variation in allele number (3-10), expected heterozygosity (0.537-0.865), and polymorphic information content per locus (0.500-0.848). CONCLUSIONS: The markers obtained for M. solomonii are the first in the genus and subtribe. The observed polymorphism will make it possible to assess genetic diversity and structure of this species and will serve to propose effective conservation actions.
Asunto(s)
Especies en Peligro de Extinción , Repeticiones de Microsatélite , Orchidaceae/genética , Clonación Molecular , Cartilla de ADN/genética , ADN de Plantas/genética , Frecuencia de los Genes , Biblioteca de Genes , Sitios Genéticos , Técnicas de Genotipaje , Heterocigoto , Polimorfismo GenéticoRESUMEN
PREMISE OF THE STUDY: Microsatellite markers were developed and characterized to investigate genetic diversity and gene flow and to help in conservation efforts for the endangered timber species Plathymenia reticulata. ⢠METHODS AND RESULTS: Eleven microsatellite loci were characterized using 60 adult trees of two populations of P. reticulata from the Atlantic Forest of southern Bahia, Brazil. Of these, nine loci were polymorphic, with an average of 4.39 alleles per locus. The average expected heterozygosity per population ranged from 0.47 to 0.55. The combined exclusion probability was 0.99996. ⢠CONCLUSIONS: Our results reveal that the microsatellite markers developed in this study are an effective tool for paternity and genetic structure analysis that may be useful for conservation strategies.
Asunto(s)
Fabaceae/genética , Repeticiones de Microsatélite/genética , Brasil , Sitios Genéticos/genética , Genética de Población , Datos de Secuencia MolecularRESUMEN
Species delimitation in herbaceous bamboos has been complex and, in some genera, a great part of its diversity has been confirmed only based on genetic information, as is the case of the genus Raddia. It includes nine species, all occurring in Brazil, but only R. portoi predominates in dry forests of the Northeast associated with the Caatinga phytogeographic domain. This species is morphologically close to R. angustifolia, which is known for a single location in the Atlantic Forest in Southern Bahia, and is considered to be threatened by extinction. Besides problems with taxonomic focus, actions for its conservation are complicated because it is not certain if it must be considered an independent species or included in the more widespread R. portoi. In this study, we used coalescent multispecies (MSC) theory approaches combined with genetic structure analyses in an attempt to delimit these two species. Different analyses were congruent and the species delimitation using MSC inferred distinct lineages supporting their recognition as two species. These results solved the taxonomic doubts and also showed the power of these approaches to delimit species as lineages, even in groups with weak morphological divergence and low genetic variability, and also impacting our knowledge for conservation purposes.
RESUMEN
The economically important cotton and cacao family (Malvaceae sensu lato) have long been recognized as a monophyletic group. However, the relationships among some subfamilies are still unclear as discordant phylogenetic hypotheses keep arising when different sources of molecular data are analyzed. Phylogenetic discordance has previously been hypothesized to be the result of both introgression and incomplete lineage sorting (ILS), but the extent and source of discordance have not yet been evaluated in the context of loci derived from massive sequencing strategies and for a wide representation of the family. Furthermore, no formal methods have been applied to evaluate if the detected phylogenetic discordance among phylogenomic datasets influences phylogenetic dating estimates of the concordant relationships. The objective of this research was to generate a phylogenetic hypothesis of Malvaceae from nuclear genes, specifically we aimed to (1) investigate the presence of major discordance among hundreds of nuclear gene histories of Malvaceae; (2) evaluate the potential source of discordance; and (3) examine whether discordance and loci heterogeneity influence on time estimates of the origin and diversification of subfamilies. Our study is based on a comprehensive dataset representing 96 genera of the nine subfamilies and 268 nuclear loci. Both concatenated and coalescence-based approaches were followed for phylogenetic inference. Using branch lengths and topology, we located the placement of introgression events to directly evaluate whether discordance is due to introgression rather than ILS. To estimate divergence times, concordance and molecular rate were considered. We filtered loci based on congruence with the species tree and then obtained the molecular rate of each locus to distribute them into three different sets corresponding to shared molecular rate ranges. Bayesian dating was performed for each of the different sets of loci with the same parameters and calibrations. Phylogenomic discordance was detected between methods, as well as gene histories. At deep coalescent times, we found discordance in the position of five subclades probably due to ILS and a relatively small proportion of introgression. Divergence time estimation with each set of loci generated overlapping clade ages, indicating that, even with different molecular rate and gene histories, calibrations generally provide a strong prior.
RESUMEN
The Brazilian palm fruits and hearts-of-palm of Euterpe edulis, E. oleracea and E. precatoria are an important source for agro-industrial production, due to overexploitation, conservation strategies are required to maintain genetic diversity. Chloroplast genomes have conserved sequences, which are useful to explore evolutionary questions. Besides the plastid DNA, genome skimming allows the identification of other genomic resources, such as single nucleotide polymorphisms (SNPs), providing information about the genetic diversity of species. We sequenced the chloroplast genome and identified gene content in the three Euterpe species. We performed comparative analyses, described the polymorphisms among the chloroplast genome sequences (repeats, indels and SNPs) and performed a phylogenomic inference based on 55 palm species chloroplast genomes. Finally, using the remaining data from genome skimming, the nuclear and mitochondrial reads, we identified SNPs and estimated the genetic diversity among these Euterpe species. The Euterpe chloroplast genomes varied from 159,232 to 159,275 bp and presented a conserved quadripartite structure with high synteny with other palms. In a pairwise comparison, we found a greater number of insertions/deletions (indels = 93 and 103) and SNPs (284 and 254) between E. edulis/E. oleracea and E. edulis/E. precatoria when compared to E. oleracea/E. precatoria (58 indels and 114 SNPs). Also, the phylogeny indicated a closer relationship between E. oleracea/E. precatoria. The nuclear and mitochondrial genome analyses identified 1,077 SNPs and high divergence among species (FST = 0.77), especially between E. edulis and E. precatoria (FST = 0.86). These results showed that, despite the few structural differences among the chloroplast genomes of these Euterpe palms, a differentiation between E. edulis and the other Euterpe species can be identified by point mutations. This study not only brings new knowledge about the evolution of Euterpe chloroplast genomes, but also these new resources open the way for future phylogenomic inferences and comparative analyses within Arecaceae.