Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 123: 73-87, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29481949

RESUMEN

The ergot, genus Claviceps, comprises approximately 60 species of specialised ovarial grass parasites famous for the production of food toxins and pharmaceutics. Although the ergot has been known for centuries, its evolution have not been resolved yet. Our approach combining multilocus phylogeny, molecular dating and the study of ecological, morphological and metabolic features shows that Claviceps originated in South America in the Palaeocene on a common ancestor of BEP (subfamilies Bambusoideae, Ehrhartoideae, Pooideae) and PACMAD (subfamilies Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) grasses. Four clades described here as sections diverged during the Paleocene and Eocene. Since Claviceps are parasitic fungi with a close relationship with their host plants, their evolution is influenced by interactions with the new hosts, either by the spread to a new continent or the radiation of the host plants. Three of the sections possess very narrow host ranges and biogeographical distributions and have relatively low toxicity. On the contrary, the section Claviceps, comprising the rye ergot, C. purpurea, is unique in all aspects. Fungi in this section of North American origin have spread all over the world and infect grasses in all subfamilies as well as sedges, and it is the only section synthesising toxic ergopeptines and secalonic acids. The evolutionary success of the Claviceps section members can be explained by high toxin presence, serving as feeding deterrents and playing a role in their protective mutualism with host plants. Closely related taxa Neoclaviceps monostipa and Cepsiclava phalaridis were combined into the genus Aciculosporium.


Asunto(s)
Claviceps/clasificación , Filogenia , Teorema de Bayes , Alcaloides de Claviceps/biosíntesis , Alcaloides de Claviceps/química , Sitios Genéticos , Geografía , Especificidad del Huésped , Metabolismo Secundario , América del Sur , Factores de Tiempo
2.
Fungal Biol ; 126(11-12): 752-763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36517143

RESUMEN

Ergot, the genus Claviceps comprises several deeply diverged lineages, recently classified as sections. Among them, the section Pusillae, is the most speciose, with a centre of distribution in Africa but occurring worldwide, often as a consequence of its invasive potential. This section includes the most severe plant pathogens such as Claviceps africana and C. gigantea, responsible for toxicoses and a significant reduction in the seed yields of Sorghum and Zea. In this study we surveyed ergot diversity in South Africa, focusing on grasses native to this region, but known for their high potential of invasiveness. The revision based on molecular and phenotypic markers revealed 16 species, with a high proportion of undescribed diversity, confirming Africa as a hot spot for this section. Five new species, Claviceps tulasnei, Claviceps eulaliae, Claviceps hypertheliae, Claviceps fredericksoniae and Claviceps arundinellae were described from Setaria, Eulalia, Hyperthelia, Miscanthus and Arundinella respectively. Claviceps texensis infecting Cenchrus, previously only identified from the same host in Texas, USA, was confirmed to be present in Africa, which is assumed to be its primary area of distribution. In addition, the host grass genus Anthephora is newly reported as a host of Claviceps digitariae. The most of the taxa were negligible concerning alkaloid production, with the exception of C. fredericksoniae, which is a sister of potent alkaloid producer C. africana, and produces mainly DH-ergosine, together with traces of DH-ergocornine. The host/parasite associations within Pusillae section is very narrow, suggesting that co-speciation is the major speciation driver in this group. Host grasses of the described species are already recognised invasive species and their ovarial parasites need to be monitored. This is highlighted by the fact that all Pusillae produced air-borne secondary conidia, which is autapomorphy of this section and considered to be important for their invasive abilities.


Asunto(s)
Claviceps , Alcaloides de Claviceps , Humanos , Claviceps/genética , Poaceae , Sudáfrica , Pueblo Africano
3.
Mycologia ; 99(4): 586-91, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18065009

RESUMEN

Symptoms of ergot on yellow nut sedge, germination of sclerotia of the causal organism, Claviceps cyperi, and morphology of fresh specimens of the pathogen are described for the first time. The initial symptom of infection was a black sooty layer on inflorescences of infected plants due to colonization of the ergot honeydew by Cladosporium cladosporioides. Sclerotia of C. cyperi started to develop in March and April and could be discerned as small protuberances on inflorescences in the place of seed. Mature sclerotia were purplish-black. They generally remained viable for less than a year and germinated without prior cold treatment, although exposure for 21 d to 5 C before incubation significantly increased the germination rate. Under moist conditions at 24 C in the laboratory, germination commenced within 4-8 wk. Stromata took about 12 d to mature. Mature capitula were distinctly lobulate with a perithecium embedded in each lobe and a collar-like appendage around the base. Although dimensions of sclerotia, stipes, capitula, asci and ascospores were larger than in the original description, the general morphology supports treatment of C. cyperi as a distinct species.


Asunto(s)
Claviceps/patogenicidad , Claviceps/ultraestructura , Cyperus/microbiología , Enfermedades de las Plantas/microbiología , Claviceps/clasificación , Claviceps/crecimiento & desarrollo , Alcaloides de Claviceps/metabolismo , Sudáfrica , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/ultraestructura
4.
Fungal Biol ; 120(8): 917-930, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27521625

RESUMEN

Results of a survey and study of the Claviceps purpurea group of species in South Africa are being presented and five new species are described. Morphological descriptions are based on the anamorphs and four nuclear genetic loci. Claviceps fimbristylidis sp. nov. on Fimbristylis complanata was discovered wide-spread across five provinces of the country associated with water and represents the fourth Claviceps species recorded from the Cyperaceae. Claviceps monticola sp. nov. is described from Brachypodium flexum growing in mountain forests in Mpumalanga Province, as well as the northern Drakensberg southwards into the Eastern Cape Province. Claviceps pazoutovae sp. nov. is recorded from Stipa dregeana var. dregeana and Ehrharta erecta var. erecta, also associated with these mountain ranges. Claviceps macroura sp. nov. is recorded from Cenchrus macrourus from the Eastern Cape and Claviceps capensis sp. nov. from Ehrharta villosa var. villosa is recorded from the Western Cape Province. Claviceps cyperi, only recorded from South Africa is included in the study. Ergot alkaloid profiles of all species are provided and showed similarity to C. purpurea. Only C. cyperi and in lesser degree C. capensis, C. macroura, and C. pazoutovae produced ergot alkaloids in clinically significant amounts. Several reported species infect invasive grass species, native to South Africa, and thus represent potentially invasive species.


Asunto(s)
Claviceps/clasificación , Claviceps/aislamiento & purificación , Microbiología Ambiental , Alcaloides de Claviceps/análisis , Cromatografía Líquida de Alta Presión , Claviceps/química , Claviceps/genética , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Bosques , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Factor 1 de Elongación Peptídica/genética , Filogenia , Análisis de Secuencia de ADN , Sudáfrica , Tubulina (Proteína)/genética , Agua
5.
IMA Fungus ; 6(1): 163-98, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26203422

RESUMEN

The present paper represents the second contribution in the Genera of Fungi series, linking type species of fungal genera to their morphology and DNA sequence data, and where possible, ecology. This paper focuses on 12 genera of microfungi, 11 of which the type species are neo- or epitypified here: Allantophomopsis (A. cytisporea, Phacidiaceae, Phacidiales, Leotiomycetes), Latorua gen. nov. (Latorua caligans, Latoruaceae, Pleosporales, Dothideomycetes), Macrodiplodiopsis (M. desmazieri, Macrodiplodiopsidaceae, Pleosporales, Dothideomycetes), Macrohilum (M. eucalypti, Macrohilaceae, Diaporthales, Sordariomycetes), Milospium (M. graphideorum, incertae sedis, Pezizomycotina), Protostegia (P. eucleae, Mycosphaerellaceae, Capnodiales, Dothideomycetes), Pyricularia (P. grisea, Pyriculariaceae, Magnaporthales, Sordariomycetes), Robillarda (R. sessilis, Robillardaceae, Xylariales, Sordariomycetes), Rutola (R. graminis, incertae sedis, Pleosporales, Dothideomycetes), Septoriella (S. phragmitis, Phaeosphaeriaceae, Pleosporales, Dothideomycetes), Torula (T. herbarum, Torulaceae, Pleosporales, Dothideomycetes) and Wojnowicia (syn. of Septoriella, S. hirta, Phaeosphaeriaceae, Pleosporales, Dothideomycetes). Novel species include Latorua grootfonteinensis, Robillarda africana, R. roystoneae, R. terrae, Torula ficus, T. hollandica, and T. masonii spp. nov., and three new families: Macrodiplodiopsisceae, Macrohilaceae, and Robillardaceae. Authors interested in contributing accounts of individual genera to larger multi-authored papers to be published in IMA Fungus, should contact the associate editors listed for the major groups of fungi on the List of Protected Generic Names for Fungi (www.generaoffungi.org).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA