RESUMEN
We study the liquid phase behavior of ternary mixtures of monodisperse hard spheres in solution. The interactions are modeled in terms of the second virial coefficient and can be additive hard sphere (HS) or non-additive hard sphere (NAHS) interactions. We give the set of equations that defines the phase diagram for mixtures of three components. We calculate the theoretical liquid-liquid phase separation boundary for two-phase separation (the binodal) and, if applicable, the three-phase boundary, as well as the plait points and the spinodal. The sizes of the three components are fixed. The first component (A) is the smallest one, the second component (B) is four times the size of the smallest component, and the third (C) component is three times the size of the smallest one. The interaction between the first two components is fixed, and this AB sub-mixture shows phase separation. The interactions of component C with the other two components are varied. Component C can be compatible or incompatible with components A and B. Depending on the compatibility of the components, the phase diagram is altered. The addition of the third component has an influence on the phase boundary, plait points, stability region, fractionation, and volume ratio between the different phases. When all sub-mixtures (AB, AC, and BC) show phase separation, a three-phase system becomes possible when the incompatibility among all components is high enough. The position and size of the three-phase region is dependent on the interactions between the different sub-mixtures. We study the fractionation off all components depending on specific parent concentrations.
RESUMEN
The ability to separate enzymes, or cells or viruses, from a mixture is important and can be realized by the incorporation of the mixture into a macromolecular solution. This incorporation may lead to a spontaneous phase separation, with one phase containing the majority of one of the species of interest. Inspired by this phenomenon, we studied the theoretical phase behavior of a model system composed of an asymmetric binary mixture of hard spheres, of which the smaller component was monodisperse and the larger component was polydisperse. The interactions were modeled in terms of the second virial coefficient and could be additive hard sphere (HS) or nonadditive hard sphere (NAHS) interactions. The polydisperse component was subdivided into two subcomponents and had an average size ten or three times the size of the monodisperse component. We gave the set of equations that defined the phase diagram for mixtures with more than two components in a solvent. We calculated the theoretical liquid-liquid phase separation boundary for the two-phase separation (the binodal) and three-phase separation, the plait point, and the spinodal. We varied the distribution of the polydisperse component in skewness and polydispersity, and we varied the nonadditivity between the subcomponents as well as between the main components. We compared the phase behavior of the polydisperse mixtures with binary monodisperse mixtures for the same average size and binary monodisperse mixtures for the same effective interaction. We found that when the compatibility between the polydisperse subcomponents decreased, the three-phase separation became possible. The shape and position of the phase boundary was dependent on the nonadditivity between the subcomponents as well as their size distribution. We conclude that it is the phase enriched in the polydisperse component that demixes into an additional phase when the incompatibility between the subcomponents increases.
Asunto(s)
Sustancias Macromoleculares , SolventesRESUMEN
The ability to separate enzymes, nucleic acids, cells, and viruses is an important asset in life sciences. This can be realised by using their spontaneous asymmetric partitioning over two macromolecular aqueous phases in equilibrium with one another. Such phases can already form while mixing two different types of macromolecules in water. We investigate the effect of polydispersity of the macromolecules on the two-phase formation. We study theoretically the phase behavior of a model polydisperse system: an asymmetric binary mixture of hard spheres, of which the smaller component is monodisperse and the larger component is polydisperse. The interactions are modelled in terms of the second virial coefficient and are assumed to be additive hard sphere interactions. The polydisperse component is subdivided into sub-components and has an average size ten times the size of the monodisperse component. We calculate the theoretical liquid-liquid phase separation boundary (the binodal), the critical point, and the spinodal. We vary the distribution of the polydisperse component in terms of skewness, modality, polydispersity, and number of sub-components. We compare the phase behavior of the polydisperse mixtures with their concomittant monodisperse mixtures. We find that the largest species in the larger (polydisperse) component causes the largest shift in the position of the phase boundary, critical point, and spinodal compared to the binary monodisperse binary mixtures. The polydisperse component also shows fractionation. The smaller species of the polydisperse component favor the phase enriched in the smaller component. This phase also has a higher-volume fraction compared to the monodisperse mixture.
RESUMEN
Crumpled sheets show slow mechanical relaxation and long lasting memory of previous mechanical states. By using uniaxial compression tests, the role of friction and ductility on the stress relaxation dynamics of crumpled systems is investigated. We find a material dependent relaxation constant that can be tuned by changing ductility and adhesive properties of the sheet. After a two-step compression protocol, nonmonotonic aging is reported for polymeric, elastomeric and metal sheets, with relaxation dynamics that are dependent on the material's properties. These findings can contribute to tailoring and programming of crumpled materials to get desirable mechanical properties.
RESUMEN
The behavior of an oil-in-water emulsion was studied in the presence of protein fibrils for a wide range of fibril concentrations by using rheology, diffusing wave spectroscopy, and confocal laser scanning microscopy. Results showed that above a minimum fibril concentration depletion flocculation occurred, leading to oil droplet aggregation and enhanced creaming of the emulsion. Upon further increasing the concentration of the protein fibrils, the emulsions were stabilized. In this stable regime both aggregates of droplets and single droplets are present, and these aggregates are smaller than the aggregates in the flocculated emulsion samples at the lower fibril concentrations. The size of the droplet aggregates in the stabilized emulsions is independent of fibril concentration. In addition, the droplet aggregation was reversible upon dilution both by a pH 2 HCl solution and by a fibril solution at the same concentration. The viscosity of the emulsions containing fibrils was comparable to that of the pure fibril solution. Neither fibril networks nor droplet gel networks were observed in our study. The stabilization mechanism of emulsions containing long protein fibrils at high protein fibril concentrations points toward the mechanism of a kinetic stabilization.
Asunto(s)
Aceites/química , Proteína de Suero de Leche/química , Emulsiones , Concentración de Iones de Hidrógeno , Microscopía Confocal , ViscosidadRESUMEN
We studied the stability of monodispersed polystyrene latex dispersions with protein fibrils at different concentrations at pH 2 using microscopy and diffusing wave spectroscopy. At low fibril concentrations, fibrils induced bridging flocculation due to the opposite charges between fibrils and the latex particles. At higher fibril concentration the dispersions were stabilized due to steric and/or electrostatic repulsion. Upon further increasing fibril concentration, we find that the dispersion is destabilized again by depletion interaction. At even higher fibril concentration, the dispersions are stabilized again. These dispersions have a higher stability compared to the dispersions without fibrils. Interestingly, these dispersions contain single particles and small clusters of particles that do not grow beyond a certain size. Although the stabilization mechanism is not clear yet, the results from microscopy and diffusing wave spectroscopy point in the direction of a kinetic barrier that depends on fibril concentration.
Asunto(s)
Agregado de Proteínas , Proteína de Suero de Leche/química , Coloides , Difusión , Látex , Microscopía , TemperaturaRESUMEN
PURPOSE: In earlier studies, the corn protein zein is found to be suitable as a sustained release agent, yet the range of drugs for which zein has been studied remains small. Here, zein is used as a sole excipient for drugs differing in hydrophobicity and isoelectric point: indomethacin, paracetamol and ranitidine. METHODS: Caplets were prepared by hot-melt extrusion (HME) and injection moulding (IM). Each of the three model drugs were tested on two drug loadings in various dissolution media. The physical state of the drug, microstructure and hydration behaviour were investigated to build up understanding for the release behaviour from a zein based matrix for drug delivery. RESULTS: Drug crystallinity of the caplets increases with drug hydrophobicity. For ranitidine and indomethacin, swelling rates, swelling capacity and release rates were pH dependent as a consequence of the presence of charged groups on the drug molecules. Both hydration rates and release rates could be approached by existing models. CONCLUSION: The drug state and pH dependant electrostatic interactions are hypothesised to influence release kinetics. Both factors can potentially be used to influence release kinetics release, thereby broadening the horizon for zein as a tuneable release agent.
Asunto(s)
Preparaciones de Acción Retardada/química , Zeína/química , Acetaminofén/química , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Excipientes/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Indometacina/química , Cinética , Ranitidina/química , Electricidad Estática , Comprimidos/químicaRESUMEN
We investigated the use of whey protein isolate (WPI) as oleogelator in liquid oil. First, heat-set WPI hydrogels were prepared varying in microstructure and network density. Then, by applying a stepwise solvent exchange procedure via an intermediate solvent, full replacement of the internal aqueous phase within the protein matrix by sunflower oil was achieved. The solvent exchange procedure was performed by using either acetone or tetrahydrofuran (THF) as intermediate solvent. The oil inside the protein matrix was homogeneously distributed without any noticeable damage to the structure. Analyzing the weight change of the protein gel as a result of the solvent exchange shows that the oil holding capacity depends on the microstructure, the polarity of the intermediate solvent, and the kinetics of the solvent exchange. Depending on the gel microstructure and protein concentration of the preceding hydrogel, the oil content in the oleogels was found to be as high as 91 wt %. Oil holding capacity correlated well with the water holding capacity of the preceding hydrogel, and its Young's modulus (stiffness). It was found that the oleogels, compared to the hydrogels, were much stiffer, as the Young's modulus increased by 2 orders of magnitude and showed a lower strain at fracture. Our novel route of structuring oil by immobilizing liquid oil inside a biodegradable protein gel matrix with tunable mechanical properties could be relevant for developing novel materials, e.g., in pharmaceutical, nutraceutical, and food applications.
Asunto(s)
Hidrogeles/química , Proteínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Compuestos Orgánicos/síntesis química , Compuestos Orgánicos/química , Oxazinas/química , SolventesRESUMEN
The drying dynamics of protein coatings is of importance for many applications. The main focus of research so far was to investigate macroscopic properties of protein coatings, leaving drying dynamics virtually unexplored. A unique combination of techniques is used to monitor drying of a coating containing the protein ß-lactoglobulin. The techniques used cover both macroscopic and microscopic aspects of the drying process. For all water fractions amenable to diffusing wave spectroscopy analysis (xw > 0.2 w/w), the tracer particles diffuse in the coating as in a Newtonian viscous medium. Magnetic resonance imaging shows both protein and water are distributed homogeneously over the coating during drying, up to water fractions above 0.2 w/w. When drying continues to lower water fractions, sudden transitions in drying behavior are observed by both dynamic vapor sorption and IR spectroscopy, which we suggest are due to changes in molecular interactions caused by dehydration of the protein backbone.
Asunto(s)
Química Farmacéutica/métodos , Materiales Biocompatibles Revestidos/síntesis química , Desecación/métodos , Lactoglobulinas/química , Animales , Bovinos , Lactoglobulinas/análisis , Factores de TiempoRESUMEN
The stability of protein microbubbles against addition of acid or surfactants was investigated. When these compounds were added, the microbubbles first released the encapsulated air. Subsequently, the protein shell completely disintegrated into nanometer-sized particles. The decrease in the number of intact microbubbles could be well described with the Weibull distribution. This distribution is based on two parameters, which suggests that two phenomena are responsible for the fracture of the microbubble shell. The microbubble shell is first weakened. Subsequently, the weakened protein shell fractures randomly. The probability of fracture turned out to be exponentially proportional to the concentration of acid and surfactant. A higher decay rate and a lower average breaking time were observed at higher acid or surfactant concentrations. For different surfactants, different decay rates were observed. The fact that the microbubble shell was ultimately disintegrated into nanometer-sized particles upon addition of acid or surfactants indicates that the interactions in the shell are non-covalent and most probably hydrophobic. After acid addition, the time at which the complete disintegration of the shell was observed coincided with the time of complete microbubble decay (release of air), while in the case of surfactant addition, there was a significant time gap between complete microbubble decay and complete shell disintegration.
Asunto(s)
Microesferas , Albúmina Sérica Bovina/química , Tensoactivos/química , Ácido Clorhídrico/químicaRESUMEN
PURPOSE: To evaluate the potential of zein as a sole excipient for controlled release formulations prepared by hot melt extrusion. METHODS: Physical mixtures of zein, water and crystalline paracetamol were hot melt extruded (HME) at 80°C and injection moulded (IM) into caplet forms. HME-IM Caplets were characterised using differential scanning calorimetry, ATR-FTIR spectroscopy, scanning electron microscopy and powder X-ray diffraction. Hydration and drug release kinetics of the caplets were investigated and fitted to a diffusion model. RESULTS: For the formulations with lower drug loadings, the drug was found to be in the non-crystalline state, while for the ones with higher drug loadings paracetamol is mostly crystalline. Release was found to be largely independent of drug loading but strongly dependent upon device dimensions, and predominately governed by a Fickian diffusion mechanism, while the hydration kinetics shows the features of Case II diffusion. CONCLUSIONS: In this study a prototype controlled release caplet formulation using zein as the sole excipient was successfully prepared using direct HME-IM processing. The results demonstrated the unique advantage of the hot melt extruded zein formulations on the tuneability of drug release rate by alternating the device dimensions.
Asunto(s)
Excipientes/química , Zeína/química , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Preparaciones de Acción Retardada , Difusión , Portadores de Fármacos/química , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Análisis de Fourier , Solubilidad , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Comprimidos , Difracción de Rayos XRESUMEN
The phase behavior of binary mixtures of γ-oryzanol and ß-sitosterol and ternary mixtures of γ-oryzanol and ß-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and ß-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and ß-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and ß-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and ß-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and ß-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.
RESUMEN
The Maillardation of proteins has been used as a natural alternative to improve its functionality by covalent coupling of proteins with saccharides. However, the impact of Maillard reaction on the structural aspects of protein networks and, as a consequence, the mechanical breakdown properties of the gel networks has not been reported. The objective of this study was to evaluate how the attachment of linear oligo-sugar moieties onto ovalbumin affects its aggregation, network morphology, and consequently the mechanical deformation properties including the ability of the networks to elastically store energy in this material. To potentially alter the morphology of the network structure, ovalbumin was modified by conjugating some of its amino groups with fructooligosaccharide (FOS) moieties via the Maillard reaction. It was demonstrated that the attachment of FOS to ovalbumin does not affect the integrity of the secondary and tertiary structure as characterized using circular dichroism and tryptophan fluorescence. Differences in the network morphology were observed by scanning electron microscopy for FOS-modified ovalbumin variants. Upon increased modification, the microstructure of the gels had more and larger pores and had thinner strands than nonmodified variants. Evaluation of the large deformation properties of the gels demonstrated that FOS-modified gels were less strong and less brittle and showed lower stiffness than nonmodified variants. The recoverable energy (elastically stored energy) of gels reduced with an increase in the degree of modification. The results show that the attachment of FOS to ovalbumin alters the structural and mechanical (large) breakdown properties of the protein gels. The consequences of the alteration of the network structure and large deformation properties of FOS-modified ovalbumin offer opportunities to efficiently design food materials with desirable techno-functional applications.
Asunto(s)
Reacción de Maillard , Oligosacáridos/química , Ovalbúmina/química , Agregado de ProteínasRESUMEN
The phase behavior is investigated for systems composed of a large number of macromolecular components N, with N ≥ 2. Liquid-liquid phase separation is modeled using a virial expansion up to the second order of the concentrations of the components. Formal analytical expressions for the spinodal manifolds in N dimensions are derived, which simplify their calculation (by transforming the original problem into inequalities that can be evaluated numerically using linear programming techniques). In addition, a new expression is obtained to calculate the critical manifold and composition of the coexisting phases. The present analytical procedure complements previous attempts to handle spinodal decomposition for many components using a statistical approach based on random matrix theory. The results are relevant for predicting the effects of polydispersity on phase behavior in fields like polymer or food science and liquid-liquid phase separation in the cytosol of living cells.
RESUMEN
Take a thin cylindrical shell and twist it; it will buckle immediately. Such unavoidable torsional buckling can lead to systemic failure, for example by disrupting the blood flow through arteries. In this study, we prevent this torsional buckling instability using a combination of auxeticity and orthotropy in cylindrical metamaterial shells with a holey pattern. When the principal axes of the orthotropic meta-shell are relatively aligned with that of the compressive component of the applied stress during twisting, the meta-shell uniformly shrinks in the radial direction as a result of a local buckling instability. This shrinkage coincides with a softening-stiffening transition that leads to ordered stacking of unit cells along the compressive component of the applied stress. These transitions due to local instabilities circumvent the usual torsional instability even under a large twist angle. This study highlights the potential of tailoring anisotropy and programming instabilities in metamaterials, with potential applications in designing mechanical elements for soft robotics, biomechanics or fluidics. As an example of such applications, we demonstrate soft torsional compressor for generating pulsatile flows through a torsion release mechanism.
RESUMEN
Lactiplantibacillus plantarum is a Gram-positive non-motile bacterium capable of producing biofilms that contribute to the colonization of surfaces in a range of different environments. In this study, we compared two strains, WCFS1 and CIP104448, in their ability to produce biofilms in static and dynamic (flow) environments using an in-house designed flow setup. This flow setup enables us to impose a non-uniform flow velocity profile across the well. Biofilm formation occurred at the bottom of the well for both strains, under static and flow conditions, where in the latter condition, CIP104448 also showed increased biofilm formation at the walls of the well in line with the higher hydrophobicity of the cells and the increased initial attachment efficacy compared to WCFS1. Fluorescence and scanning electron microscopy showed open 3D structured biofilms formed under flow conditions, containing live cells and â¼30 % damaged/dead cells for CIP104448, whereas the WCFS1 biofilm showed live cells closely packed together. Comparative proteome analysis revealed minimal changes between planktonic and static biofilm cells of the respective strains suggesting that biofilm formation within 24 h is merely a passive process. Notably, observed proteome changes in WCFS1 and CIP104448 flow biofilm cells indicated similar and unique responses including changes in metabolic activity, redox/electron transfer and cell division proteins for both strains, and myo-inositol production for WCFS1 and oxidative stress response and DNA damage repair for CIP104448 uniquely. Exposure to DNase and protease treatments as well as lethal concentrations of peracetic acid showed highest resistance of flow biofilms. For the latter, CIP104448 flow biofilm even maintained its high disinfectant resistance after dispersal from the bottom and from the walls of the well. Combining all results highlights that L. plantarum biofilm structure and matrix, and physiological state and stress resistance of cells is strain dependent and strongly affected under flow conditions. It is concluded that consideration of effects of flow on biofilm formation is essential to better understand biofilm formation in different settings, including food processing environments.
RESUMEN
In this paper, the rheological response of air/water interfaces, stabilized by various oligofructose fatty acid esters, to oscillatory dilatational deformations was studied and compared to the response of interfaces stabilized by sucrose esters. We have followed a traditional approach to surface rheology, where the development of the modulus as a function of time is studied as well as the frequency dependence of the modulus. We also adopted a different approach where we investigate in detail the amplitude dependence of the modulus. Finally, we studied the temperature dependence. We show that for an accurate characterization of the dilatational rheology of fluidfluid interfaces with a complex microstructure, a protocol should be used that not only involves variations of surface pressure, frequency, and temperature, but also establishes amplitude dependence. We show that Lissajous plots of surface pressure versus deformation can be useful tools to help interpret surface dilatational behavior in terms of interfacial microstructure. The rheological response of interfaces stabilized by oligofructose esters differed significantly from the response of those stabilized by sucrose esters. Sucrose esters behaved like typical low molecular weight surfactants, and gave interfaces with relatively low moduli, a frequency scaling of the dilatational modulus with an exponent close to 0.5, and displayed no asymmetries in Lissajous plots. In contrast, the oligofructose esters gave, depending on the fatty acid tail, relatively high moduli, almost independent of frequency. Significant asymmetries were observed in the Lissajous plots, with strain hardening during compression and strain softening during extension. Our results suggest that the unusual rheological properties of interfaces stabilized by oligofructose esters may be the result of the formation of a two-dimensional soft glass phase by the oligofructose part of the ester.
RESUMEN
Bacillus cereus is a food-borne pathogen capable of producing biofilms. Following analysis of biofilm formation by B. cereus ATCC 14579 transposon mutants in defined medium (DM), a deletion mutant of bc2939 (Δbc2939) was constructed that showed decreased crystal violet biofilm staining and biofilm cell counts. In addition, Δbc2939 also produced smaller colony biofilms with lower cell counts and loss of wrinkly morphology. The bc2939 gene encodes for Prephenate dehydrogenase, which converts Prephenate to 4-Hydroxy-phenylpyruvate (4-HPPA) in the l-tyrosine branch of the Shikimate pathway. While growth of the mutant and WT in DM was similar, addition of l-tyrosine was required to restore WT-like (colony) biofilm formation. Comparative proteomics showed reduced expression of Tyrosine-protein kinase/phosphatase regulators and extracellular polysaccharide cluster 1 (EPS1) proteins, aerobic electron transfer chain cytochrome aa3/d quinol oxidases, and iso-chorismate synthase involved in menaquinone synthesis in DM grown mutant biofilm cells, while multiple oxidative stress-related catalases and superoxide dismutases were upregulated. Performance in shaking cultures showed a 100-fold lower concentration of menaquinone-7 and reduction in cell counts of DM grown Δbc2939 indicating increased oxygen sensitivity. Combining all results, points to an important role of Tyrosine-modulated EPS1 production and menaquinone-dependent aerobic respiration in B. cereus ATCC 14579 (colony) biofilm formation.
Asunto(s)
Bacillus cereus , Tirosina , Bacillus cereus/genética , Vitamina K 2 , BiopelículasRESUMEN
We have calculated an entropy or information measure of previously reported experimentally determined temporal dominance of sensations (TDS) data of texture attributes for two sets of emulsion filled gels throughout the mastication cycle. The samples were emulsion filled gels and two-layered emulsion filled gels. We find that the entropy measure follows an average curve, which is different for each set. The specifics of the entropy curve may serve as a fingerprint for the perception of a specific food sample.
RESUMEN
Whey protein particles have several applications in modulating food structure and for encapsulation, but there is a lack of methods to prepare particles with a very high internal protein content. In this study whey protein particles with high internal protein content were prepared through emulsification and heat gelation of 25% (w/w) whey protein isolate solution at different pH (6.8 or 5.5) and NaCl concentrations (50, 200, or 400 mM). Particles formed at pH 6.8 were spherical, whereas those formed at pH 5.5 were irregular and had a cauliflower-like appearance. Both particles had an average size of few micrometers, and the particles formed at pH 5.5 had higher protein content (â¼39% w/v) than the particles formed at pH 6.8 (â¼18% w/v). Similarly, particle morphology and protein density were also affected by initial NaCl concentration: particles formed at 50 mM NaCl (pH 6.8) were spherical, whereas particles formed at either 200 mM NaCl (pH 6.7) or 400 mM NaCl (pH 6.6) were irregular and protein density of the particles increased with increasing initial NaCl concentration. Whey protein particles formed at pH 5.5 showed an excellent heat stability: viscosity of the suspensions containing approximately 30% of protein particles formed at pH 5.5 did not show any change after heating at 90 °C for 30 min while the viscosity of suspensions containing protein particles prepared at other conditions increased after heating. In summary, whey protein particles with varying microstructure, shape, internal protein density, and heat stability can be formed by using heat-induced gelation of whey protein isolate at different gelling conditions.