Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Soft Matter ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007766

RESUMEN

When a pure ethanol droplet is deposited on a dry, wettable and conductive substrate, it is expected to spread into a thin, uniform film. Here, we demonstrate that this uniform spreading behaviour can be altered significantly by controlling the ambient relative humidity. We show that higher relative humidity not only promotes faster spreading of the droplet, it also destabilizes the moving contact line, resulting in a fingering instability. We observe that these effects primarily emerge due to the hygroscopic nature of the pure droplet, which eventually leads to solutal-Marangoni effects. Additionally, heat transfer between the evaporating droplet and the underlying substrate also plays a crucial role in the overall dynamics. Thus, the overall spreading of a pure hygroscopic droplet is determined by a delicate interplay between solutal and thermal Marangoni effects.

2.
Soft Matter ; 18(19): 3660-3677, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35485633

RESUMEN

The vibration dynamics of relatively large granular grains is extensively treated in the literature, but comparable studies on the self-assembly of smaller agitated beads are lacking. In this work, we investigate how the particle properties and the properties of the underlying substrate surface affect the dynamics and self-organization of horizontally agitated monodisperse microspheres with diameters between 3 and 10 µm. Upon agitation, the agglomerated hydrophilic silica particles locally leave traces of particle monolayers as they move across the flat uncoated and fluorocarbon-coated silicon substrates. However, on the micromachined silicon tray with relatively large surface roughness, the agitated silica agglomerates form segregated bands reminiscent of earlier studies on granular suspensions or Faraday heaps. On the other hand, the less agglomerated hydrophobic polystyrene particles form densely occupied monolayer arrangements regardless of the underlying substrate. We explain the observations by considering the relevant adhesion and friction forces between particles and underlying substrates as well as those among the particles themselves. Interestingly, for both types of microspheres, large areas of the fluorocarbon-coated substrates are covered with densely occupied particle monolayers. By qualitatively examining the morphology of the self-organized particle monolayers using the Voronoi approach, it is understood that these monolayers are highly disordered, i.e., multiple symmetries coexist in the self-organized monolayers. However, more structured symmetries are identified in the monolayers of the agitated polystyrene microspheres on all the substrates, albeit not all precisely positioned on a hexagonal lattice. On the other hand, both the silica and polystyrene monolayers on the bare silicon substrates transition into less disordered structures as time progresses. Using Kelvin probe force microscopy measurements, we show that due to the tribocharging phenomenon, the formation of particle monolayers is promoted on the fluorocarbon surface, i.e., a local electrostatic attraction exists between the particle and the substrate.

3.
Proc Natl Acad Sci U S A ; 116(4): 1174-1179, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30617076

RESUMEN

When deposited on a hot bath, volatile drops are observed to stay in levitation: the so-called Leidenfrost effect. Here, we discuss drop dynamics in an inverse Leidenfrost situation where room-temperature drops are deposited on a liquid-nitrogen pool and levitate on a vapor film generated by evaporation of the bath. In the seconds following deposition, we observe that the droplets start to glide on the bath along a straight path, only disrupted by elastic bouncing close to the edges of the container. Initially at rest, these self-propelled drops accelerate within a few seconds and reach velocities on the order of a few centimeters per second before slowing down on a longer time scale. They remain self-propelled as long as they are sitting on the bath, even after freezing and cooling down to liquid-nitrogen temperature. We experimentally investigate the parameters that affect liquid motion and propose a model, based on the experimentally and numerically observed (stable) symmetry breaking within the vapor film that supports the drop. When the film thickness and the cooling dynamics of the drops are also modeled, the variations of the drop velocities can be accurately reproduced.

4.
Soft Matter ; 17(32): 7466-7475, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34268551

RESUMEN

High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young-Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties.

5.
Soft Matter ; 17(1): 120-125, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33155013

RESUMEN

How does the impact of a deformable droplet on a granular bed differ from that caused by a solid impactor of similar size and density? Here, we experimentally study this question and focus on the effect of intruder deformability on the crater shape. For comparable impact energies, we show that the crater diameter is larger for droplets than for solid intruders but that the impact of the latter results in deeper craters. Interestingly, for initially dense beds of packing fractions larger than 0.58, we find that the resultant excavated crater volume is independent of the intruder deformability, suggesting an impactor-independent dissipation mechanism within the sand for these dense beds.

6.
Soft Matter ; 16(20): 4728-4738, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32292997

RESUMEN

The diffusion-driven growth of a dense cloud of bubbles immersed in a gas-supersaturated liquid is a problem that finds applications in several modern technologies such as solvent-exchange micro-reactors, nanotechnology or the manufacturing of foamy materials. However, under Earth's gravity conditions, these dynamics can only be observed for a very limited time if the cloud is not attached to a surface, due to the action of buoyancy, i.e. of gravity effects. Here, we present experimental observations of the time evolution of dense bubble clouds growing in CO2-supersaturated water under microgravity conditions. We report the existence of three regimes where the bubble cloud exhibits different growth rates. At short times, each bubble grows independently following the Epstein-Plesset equation. Later on, bubbles start to interact with each other and their growth rate diminishes as they compete for the available CO2. When this happens, the growth rate slows down. This occurs earlier the deeper the bubble is in the cloud. Finally, at long times, only those bubbles on the husk continue growing. These regimes may be qualitatively described by a mathematical model where each individual bubble grows in the presence of a constellation of point mass sinks. Despite the model being only valid for dilute bubble clouds, its predictions are consistent with the experimental observations, even though the bubble clouds we observe are rather dense.

7.
Soft Matter ; 16(16): 4043-4048, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32270805

RESUMEN

Drops deposited on an evaporating liquid bath can be maintained in an inverse Leidenfrost state by the vapor emanating from the bath, making them levitate and hover without effective friction. These perfectly non-wetting droplets create a depression in the liquid interface that sustains their weight, which generates repellent forces when they approach a meniscus rising against a wall. Here, we study this reflection in detail, and show that frictionless Leidenfrost drops are a simple and efficient tool to probe the shape of an unknown interface. We then use the menisci to control the motion of the otherwise elusive drops. We create waveguides to direct and accelerate them and use parabolic walls to reflect and focus them. This could be particularly beneficial in the scale up of droplet cryopreservation processes: capillary interactions can be used to transport, gather and collect vitrified biological samples in absence of contact and contamination.

8.
Soft Matter ; 15(23): 4629-4638, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31111135

RESUMEN

We experimentally study the impacts of viscous, immiscible oil drops into a deep pool of water. Within the target liquid pool, the impacting drop creates a crater, whose dynamics are studied. It is found that the inertia of pool liquid and drop viscosity are the main factors that determine the crater's maximum depth, while the additional factor of mutual immiscibility between the drop and pool liquids leads to interesting interfacial dynamics along the oil-water interface. We discuss how this can change the crater dynamics in its retraction phase, making possible a type of double-entrainment, whereby a tiny air bubble is entrapped inside a water-entrained oil drop. Further, we report the observation of a type of 'fingering' that occurs along the oil-drop rim, which we discuss, arises as a remnant of the well-known crown-splash instability.

9.
Langmuir ; 34(25): 7309-7318, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29847948

RESUMEN

Nanobubble nucleation is a problem that affects efficiency in electrocatalytic reactions since those bubbles can block the surface of the catalytic sites. In this article, we focus on the nucleation rate of O2 nanobubbles resulting from the electrooxidation of H2O2 at Pt disk nanoelectrodes. Bubbles form almost instantaneously when a critical peak current, inbp, is applied, but for lower currents, bubble nucleation is a stochastic process in which the nucleation (induction) time, tind, dramatically decreases as the applied current approaches inbp, a consequence of the local supersaturation level, ζ, increasing at high currents. Here, by applying different currents below inbp, nanobubbles take some time to nucleate and block the surface of the Pt electrode at which the reaction occurs, providing a means to measure the stochastic tind. We study in detail the different conditions in which nanobubbles appear, concluding that the electrode surface needs to be preconditioned to achieve reproducible results. We also measure the activation energy for bubble nucleation, Ea, which varies in the range from (6 to 30) kT, and assuming a spherically cap-shaped nanobubble nucleus, we determine the footprint diameter L = 8-15 nm, the contact angle to the electrode surface θ = 135-155°, and the number of O2 molecules contained in the nucleus (50 to 900 molecules).

10.
Phys Rev Lett ; 118(5): 054502, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28211715

RESUMEN

Would a raindrop impacting on a coarse beach behave differently from that impacting on a desert of fine sand? We study this question by a series of model experiments, where the packing density of the granular target, the wettability of individual grains, the grain size, the impacting liquid, and the impact speed are varied. We find that by increasing the grain size and/or the wettability of individual grains the maximum droplet spreading undergoes a transition from a capillary regime towards a viscous regime, and splashing is suppressed. The liquid-grain mixing is discovered to be the underlying mechanism. An effective viscosity is defined accordingly to quantitatively explain the observations.

11.
Langmuir ; 33(45): 12873-12886, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29041778

RESUMEN

Control over the bubble growth rates forming on the electrodes of water-splitting cells or chemical reactors is critical with respect to the attainment of higher energy efficiencies within these devices. This study focuses on the diffusion-driven growth dynamics of a succession of H2 bubbles generated at a flat silicon electrode substrate. Controlled nucleation is achieved by means of a single nucleation site consisting of a hydrophobic micropit etched within a micrometer-sized pillar. In our experimental configuration of constant-current electrolysis, we identify gas depletion from (i) previous bubbles in the succession, (ii) unwanted bubbles forming on the sidewalls, and (iii) the mere presence of the circular cavity where the electrode is being held. The impact of these effects on bubble growth is discussed with support from numerical simulations. The time evolution of the dimensionless bubble growth coefficient, which is a measure of the overall growth rate of a particular bubble, of electrolysis-generated bubbles is compared to that of CO2 bubbles growing on a similar surface in the presence of a supersaturated solution of carbonated water. For electrolytic bubbles and under the range of current densities considered here (5-15 A/m2), it is observed that H2 bubble successions at large gas-evolving substrates first experience a stagnation regime, followed by a fast increase in the growth coefficient before a steady state is reached. This clearly contradicts the common assumption that constant current densities must yield time-invariant growth rates. Conversely, for the case of CO2 bubbles, the growth coefficient successively decreases for every subsequent bubble as a result of the persistent depletion of dissolved CO2.

12.
Soft Matter ; 11(33): 6562-8, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26158484

RESUMEN

As a droplet impacts upon a granular substrate, both the intruder and the target undergo deformation, during which the liquid may penetrate into the substrate. These three aspects together distinguish it from other impact phenomena in the literature. We perform high-speed, double-laser profilometry measurements and disentangle the dynamics into three aspects: the deformation of the substrate during the impact, the maximum spreading diameter of the droplet, and the penetration of the liquid into the substrate. By systematically varying the impact speed and the packing fraction of the substrate, (i) the substrate deformation indicates a critical packing fraction ϕ* ≈ 0.585; (ii) the maximum droplet spreading diameter is found to scale with a Weber number corrected by the substrate deformation; and (iii) a model of the liquid penetration is established and is used to explain the observed crater morphology transition.


Asunto(s)
Química Física/métodos , Química Física/instrumentación , Modelos Teóricos , Lluvia , Dióxido de Silicio , Agua/química
13.
Phys Rev E ; 109(6-1): 064906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39020993

RESUMEN

In this work, we performed experiments regarding the outflow of spheres and two different types of rice-shaped particles in a quasi-two-dimensional monolayer silo with a flat bottom. We investigate the velocity and solid fraction profiles at the orifice and test whether the profiles for nonspherical particles have similar self-similar properties as in the spherical case. We find that the magnitude and shape of the velocity profiles for all three particle types are in a similar range. In contrast, the solid fraction at the orifice has a dome-shaped profile for both rice particles, whereas the profile for spherical particles is rather flat. The discharge rate determined from the velocity and solid fraction profiles describes the independently measured experimental discharge rate very well for all three investigated particle types.

14.
Phys Rev E ; 108(6-1): 064905, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38243512

RESUMEN

When objects are forced to flow through constrictions their transport can be frustrated temporarily or permanently due to the formation of arches in the region of the bottleneck. While such systems have been intensively studied in the case of solid particles in a gas phase being forced by gravitational forces, the case of solid particles suspended in a liquid phase, forced by the liquid itself, has received much less attention. In this case, the influence of the liquid flow on the transport efficiency is not well understood yet, leading to several apparently trivial but yet unanswered questions, e.g., would an increase of the liquid flow improve the transport of particles or worsen it? Although some experimental data are already available, they lack enough detail to give a complete answer to such a question. Numerical models would be needed to scrutinize the system deeper. In this paper, we study this system making use of an advanced discrete particle solver (mercurydpm) and an approximated numerical model for the liquid drag and compare the results with experimental data.

15.
Phys Rev Lett ; 108(21): 210604, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23003232

RESUMEN

We investigate the validity of fluctuation theorems for an asymmetric rotor experiment in a granular gas. A first state, with a Gaussian distribution of the angular velocity, is found to be well described by a first order Langevin equation. We show that fluctuation theorems are valid for the injected work and for the total entropy production. In a second state, the angular velocity distribution is double peaked due to a spontaneous symmetry breaking: A convection roll develops in the granular gas, which strongly couples to the rotor. Surprisingly, in this case, similar symmetry relations hold, which lead to a good prediction for the height ratio of the two peaks.

16.
Phys Rev Lett ; 109(26): 264501, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23368566

RESUMEN

At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for small impact velocity and small droplets, capillary forces minimize the entrained bubble. However, we demonstrate experimentally, theoretically, and numerically that in between there is an optimum, leading to maximal air bubble entrapment. For a 1.8 mm diameter ethanol droplet, this optimum is achieved at an impact velocity of 0.25 m/s. Our results have a strong bearing on various applications in printing technology, microelectronics, immersion lithography, diagnostics, or agriculture.

17.
Phys Rev Lett ; 104(24): 248001, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20867337

RESUMEN

We construct a ratchet of the Smoluchowski-Feynman type, consisting of four vanes that are allowed to rotate freely in a vibrofluidized granular gas. The necessary out-of-equilibrium environment is provided by the inelastically colliding grains, and the equally crucial symmetry breaking by applying a soft coating to one side of each vane. The onset of the ratchet effect occurs at a critical shaking strength via a smooth, continuous phase transition. For very strong shaking the vanes interact actively with the gas and a convection roll develops, sustaining the rotation of the vanes.

18.
Phys Rev Lett ; 104(2): 024501, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20366598

RESUMEN

A solid object impacting on liquid creates a liquid jet due to the collapse of the impact cavity. Using visualization experiments with smoke particles and multiscale simulations, we show that in addition, a high-speed air jet is pushed out of the cavity. Despite an impact velocity of only 1 m/s, this air jet attains supersonic speeds already when the cavity is slightly larger than 1 mm in diameter. The structure of the air flow closely resembles that of compressible flow through a nozzle-with the key difference that here the "nozzle" is a liquid cavity shrinking rapidly in time.

19.
Phys Rev Lett ; 104(3): 038001, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20366684

RESUMEN

Strongly vertically shaken granular matter can display a density inversion: A high-density cluster of beads is elevated by a dilute gaslike layer of fast beads underneath ("granular Leidenfrost effect"). For even stronger shaking the granular Leidenfrost state becomes unstable and granular convection rolls emerge. This transition resembles the classical onset of convection in fluid heated from below at some critical Rayleigh number. The same transition is seen in molecular dynamics (MD) simulations of the shaken granular material. The critical shaking strength for the onset of granular convection can be calculated from a linear stability analysis of a hydrodynamiclike model of the granular flow. Experiment, MD simulations, and theory quantitatively agree.

20.
Nature ; 459(7250): 1064-5, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19553984
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA