RESUMEN
KBTBD13 variants cause nemaline myopathy type 6 (NEM6). The majority of NEM6 patients harbors the Dutch founder variant, c.1222C>T, p.Arg408Cys (KBTBD13 p.R408C). Although KBTBD13 is expressed in cardiac muscle, cardiac involvement in NEM6 is unknown. Here, we constructed pedigrees of three families with the KBTBD13 p.R408C variant. In 65 evaluated patients, 12% presented with left ventricle dilatation, 29% with left ventricular ejection fraction< 50%, 8% with atrial fibrillation, 9% with ventricular tachycardia, and 20% with repolarization abnormalities. Five patients received an implantable cardioverter defibrillator, three cases of sudden cardiac death were reported. Linkage analysis confirmed cosegregation of the KBTBD13 p.R408C variant with the cardiac phenotype. Mouse studies revealed that (1) mice harboring the Kbtbd13 p.R408C variant display mild diastolic dysfunction; (2) Kbtbd13-deficient mice have systolic dysfunction. Hence, (1) KBTBD13 is associated with cardiac dysfunction and cardiomyopathy; (2) KBTBD13 should be added to the cardiomyopathy gene panel; (3) NEM6 patients should be referred to the cardiologist.
Asunto(s)
Cardiomiopatías , Proteínas Musculares , Animales , Humanos , Ratones , Arritmias Cardíacas , Cardiomiopatías/genética , Muerte Súbita Cardíaca/etiología , Desfibriladores Implantables , Proteínas Musculares/genética , Volumen Sistólico/fisiología , Función Ventricular IzquierdaRESUMEN
Diaphragm weakness frequently develops in mechanically ventilated critically ill patients and is associated with increased morbidity, including ventilator weaning failure, mortality, and health care costs. The mechanisms underlying diaphragm weakness are incompletely understood but may include the elastic properties of titin, a giant protein whose layout in the muscle's sarcomeres makes it an ideal candidate to sense ventilation-induced diaphragm unloading, resulting in downstream signaling through titin-binding proteins. In the current study, we investigated whether modulating titin stiffness affects the development of diaphragm weakness during mechanical ventilation. To this end, we ventilated genetically engineered mice with reduced titin stiffness (Rbm20ΔRRM), and robust (TtnΔIAjxn) or severely (TtnΔ112-158) increased titin stiffness for 8 h, and assessed diaphragm contractility and protein expression of titin-binding proteins. Mechanical ventilation reduced the maximum active tension of the diaphragm in WT, TtnΔIAjxn and TtnΔ112-158 mice. However, in Rbm20ΔRRM mice maximum active tension was preserved after ventilation. Analyses of titin binding proteins suggest that muscle ankyrin repeat proteins (MARPs) 1 and 2 may play a role in the adaptation of the diaphragm to mechanical ventilation, and the preservation of diaphragm contractility in Rbm20ΔRRM mice. Thus, Rbm20ΔRRM mice, expressing titin isoforms with lower stiffness, are protected from mechanical ventilation-induced diaphragm weakness, suggesting that titin elasticity may modulate the diaphragm's response to unloading during mechanical ventilation.
Asunto(s)
Trastornos Respiratorios , Respiración Artificial , Ratones , Animales , Conectina/metabolismo , Respiración Artificial/efectos adversos , Diafragma/metabolismo , Debilidad Muscular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARNRESUMEN
The diaphragm, the main muscle of inspiration, is constantly subjected to mechanical loading. Only during controlled mechanical ventilation, as occurs during thoracic surgery and in the intensive care unit, is mechanical loading of the diaphragm arrested. Animal studies indicate that the diaphragm is highly sensitive to unloading, causing rapid muscle fiber atrophy and contractile weakness; unloading-induced diaphragm atrophy and contractile weakness have been suggested to contribute to the difficulties in weaning patients from ventilator support. The molecular triggers that initiate the rapid unloading atrophy of the diaphragm are not well understood, although proteolytic pathways and oxidative signaling have been shown to be involved. Mechanical stress is known to play an important role in the maintenance of muscle mass. Within the muscle's sarcomere, titin is considered to play an important role in the stress-response machinery. Titin is a giant protein that acts as a mechanosensor regulating muscle protein expression in a sarcomere strain-dependent fashion. Thus titin is an attractive candidate for sensing the sudden mechanical arrest of the diaphragm when patients are mechanically ventilated, leading to changes in muscle protein expression. Here, we provide a novel perspective on how titin and its biomechanical sensing and signaling might be involved in the development of mechanical unloading-induced diaphragm weakness.
Asunto(s)
Conectina/metabolismo , Diafragma/metabolismo , Enfermedades Pulmonares/metabolismo , Mecanotransducción Celular , Contracción Muscular , Fuerza Muscular , Debilidad Muscular/metabolismo , Atrofia Muscular/metabolismo , Animales , Diafragma/patología , Diafragma/fisiopatología , Humanos , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/fisiopatología , Enfermedades Pulmonares/terapia , Debilidad Muscular/patología , Debilidad Muscular/fisiopatología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Respiración ArtificialRESUMEN
RATIONALE: Diaphragm weakness in critically ill patients prolongs ventilator dependency and duration of hospital stay and increases mortality and healthcare costs. The mechanisms underlying diaphragm weakness include cross-sectional fiber atrophy and contractile protein dysfunction, but whether additional mechanisms are at play is unknown. OBJECTIVES: To test the hypothesis that mechanical ventilation with positive end-expiratory pressure (PEEP) induces longitudinal atrophy by displacing the diaphragm in the caudal direction and reducing the length of fibers. METHODS: We studied structure and function of diaphragm fibers of mechanically ventilated critically ill patients and mechanically ventilated rats with normal and increased titin compliance. MEASUREMENTS AND MAIN RESULTS: PEEP causes a caudal movement of the diaphragm, both in critically ill patients and in rats, and this caudal movement reduces fiber length. Diaphragm fibers of 18-hour mechanically ventilated rats (PEEP of 2.5 cm H2O) adapt to the reduced length by absorbing serially linked sarcomeres, the smallest contractile units in muscle (i.e., longitudinal atrophy). Increasing the compliance of titin molecules reduces longitudinal atrophy. CONCLUSIONS: Mechanical ventilation with PEEP results in longitudinal atrophy of diaphragm fibers, a response that is modulated by the elasticity of the giant sarcomeric protein titin. We postulate that longitudinal atrophy, in concert with the aforementioned cross-sectional atrophy, hampers spontaneous breathing trials in critically ill patients: during these efforts, end-expiratory lung volume is reduced, and the shortened diaphragm fibers are stretched to excessive sarcomere lengths. At these lengths, muscle fibers generate less force, and diaphragm weakness ensues.
Asunto(s)
Diafragma/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Respiración con Presión Positiva/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biopsia , Diafragma/diagnóstico por imagen , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Atrofia Muscular/diagnóstico por imagen , Ratas , UltrasonografíaRESUMEN
Patients receiving mechanical ventilation in the intensive care unit (ICU) frequently develop contractile weakness of the diaphragm. Consequently, they may experience difficulty weaning from mechanical ventilation, which increases mortality and poses a high economic burden. Because of a lack of knowledge regarding the molecular changes in the diaphragm, no treatment is currently available to improve diaphragm contractility. We compared diaphragm biopsies from ventilated ICU patients (N = 54) to those of non-ICU patients undergoing thoracic surgery (N = 27). By integrating data from myofiber force measurements, x-ray diffraction experiments, and biochemical assays with clinical data, we found that in myofibers isolated from the diaphragm of ventilated ICU patients, myosin is trapped in an energy-sparing, super-relaxed state, which impairs the binding of myosin to actin during diaphragm contraction. Studies on quadriceps biopsies of ICU patients and on the diaphragm of previously healthy mechanically ventilated rats suggested that the super-relaxed myosins are specific to the diaphragm and not a result of critical illness. Exposing slow- and fast-twitch myofibers isolated from the diaphragm biopsies to small-molecule compounds activating troponin restored contractile force in vitro. These findings support the continued development of drugs that target sarcomere proteins to increase the calcium sensitivity of myofibers for the treatment of ICU-acquired diaphragm weakness.
Asunto(s)
Diafragma , Contracción Muscular , Miosinas , Respiración Artificial , Músculos Respiratorios , Humanos , Animales , Miosinas/metabolismo , Diafragma/metabolismo , Diafragma/fisiopatología , Músculos Respiratorios/metabolismo , Ratas , Masculino , Unidades de Cuidados Intensivos , Persona de Mediana Edad , Femenino , Anciano , Hibernación/fisiología , Actinas/metabolismoRESUMEN
Titin-dependent stiffening of cardiomyocytes is a significant contributor to left ventricular (LV) diastolic dysfunction in heart failure with preserved LV ejection fraction (HFpEF). Small heat shock proteins (HSPs), such as HSPB5 and HSPB1, protect titin and administration of HSPB5 in vitro lowers cardiomyocyte stiffness in pressure-overload hypertrophy. In humans, oral treatment with geranylgeranylacetone (GGA) increases myocardial HSP expression, but the functional implications are unknown. Our objective was to investigate whether oral GGA treatment lowers cardiomyocyte stiffness and attenuates LV diastolic dysfunction in a rat model of the cardiometabolic syndrome. Twenty-one-week-old male lean (n = 10) and obese (n = 20) ZSF1 rats were studied, and obese rats were randomized to receive GGA (200 mg/kg/day) or vehicle by oral gavage for 4 weeks. Echocardiography and cardiac catheterization were performed before sacrifice at 25 weeks of age. Titin-based stiffness (Fpassive ) was determined by force measurements in relaxing solution with 100 nM [Ca2+ ] in permeabilized cardiomyocytes at sarcomere lengths (SL) ranging from 1.8 to 2.4 µm. In obese ZSF1 rats, GGA reduced isovolumic relaxation time of the LV without affecting blood pressure, EF or LV weight. In cardiomyocytes, GGA increased myofilament-bound HSPB5 and HSPB1 expression. Vehicle-treated obese rats exhibited higher cardiomyocyte stiffness at all SLs compared to lean rats, while GGA reduced stiffness at SL 2.0 µm. In obese ZSF1 rats, oral GGA treatment improves cardiomyocyte stiffness by increasing myofilament-bound HSPB1 and HSPB5. GGA could represent a potential novel therapy for the early stage of diastolic dysfunction in the cardiometabolic syndrome.
Asunto(s)
Insuficiencia Cardíaca , Síndrome Metabólico , Disfunción Ventricular Izquierda , Humanos , Ratas , Masculino , Animales , Miocitos Cardíacos/metabolismo , Conectina/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Volumen Sistólico/fisiología , Obesidad/tratamiento farmacológico , Obesidad/metabolismoRESUMEN
Heart failure with preserved ejection fraction (HFpEF) accounts for â¼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.
Asunto(s)
Insuficiencia Cardíaca , Enfermedades Musculares , Animales , Femenino , Humanos , Peróxido de Hidrógeno , Posmenopausia , Calidad de Vida , Ratas , Ratas Endogámicas WKY , Volumen SistólicoRESUMEN
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
RESUMEN
Muscle ankyrin repeat protein 1 (MARP1) is frequently up-regulated in stressed muscle, but its effect on skeletal muscle function is poorly understood. Here, we focused on its interaction with the titin-N2A element, found in titin's molecular spring region. We show that MARP1 binds to F-actin, and that this interaction is stronger when MARP1 forms a complex with titin-N2A. Mechanics and super-resolution microscopy revealed that MARP1 "locks" titin-N2A to the sarcomeric thin filament, causing increased extension of titin's elastic PEVK element and, importantly, increased passive force. In support of this mechanism, removal of thin filaments abolished the effect of MARP1 on passive force. The clinical relevance of this mechanism was established in diaphragm myofibers of mechanically ventilated rats and of critically ill patients. Thus, MARP1 regulates passive force by locking titin to the thin filament. We propose that in stressed muscle, this mechanism protects the sarcomere from mechanical damage.
Asunto(s)
Repetición de Anquirina , Conectina/metabolismo , Sarcómeros , Animales , Conectina/genética , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares , Ratas , Proteínas Represoras , Sarcómeros/metabolismoRESUMEN
The Proline, Glutamate, Valine and Lysine-rich (PEVK) region of titin constitutes an entropic spring that provides passive tension to striated muscle. To study the functional and structural repercussions of a small reduction in the size of the PEVK region, we investigated skeletal muscles of a mouse with the constitutively expressed C-terminal PEVK exons 219-225 deleted, the TtnΔ219-225 model (MGI: TtnTM 2.1Mgot ). Based on this deletion, passive tension in skeletal muscle was predicted to be increased by â¼17% (sarcomere length 3.0 µm). In contrast, measured passive tension (sarcomere length 3.0 µm) in both soleus and EDL muscles was increased 53 ± 11% and 62 ± 4%, respectively. This unexpected increase was due to changes in titin, not to alterations in the extracellular matrix, and is likely caused by co-expression of two titin isoforms in TtnΔ219-225 muscles: a larger isoform that represents the TtnΔ219-225 N2A titin and a smaller isoform, referred to as N2A2. N2A2 represents a splicing adaption with reduced expression of spring element exons, as determined by titin exon microarray analysis. Maximal tetanic tension was increased in TtnΔ219-225 soleus muscle (WT 240 ± 9; TtnΔ219-225 276 ± 17 mN/mm2), but was reduced in EDL muscle (WT 315 ± 9; TtnΔ219-225 280 ± 14 mN/mm2). The changes in active tension coincided with a switch toward slow fiber types and, unexpectedly, faster kinetics of tension generation and relaxation. Functional overload (FO; ablation) and hindlimb suspension (HS; unloading) experiments were also conducted. TtnΔ219-225 mice showed increases in both longitudinal hypertrophy (increased number of sarcomeres in series) and cross-sectional hypertrophy (increased number of sarcomeres in parallel) in response to FO and attenuated cross-sectional atrophy in response to HS. In summary, slow- and fast-twitch muscles in a mouse model devoid of titin's PEVK exons 219-225 have high passive tension, due in part to alterations elsewhere in splicing of titin's spring region, increased kinetics of tension generation and relaxation, and altered trophic responses to both functional overload and unloading. This implicates titin's C-terminal PEVK region in regulating passive and active muscle mechanics and muscle plasticity.
RESUMEN
Nebulin is a giant protein that winds around the actin filaments in the skeletal muscle sarcomere. Compound-heterozygous mutations in the nebulin gene (NEB) cause typical nemaline myopathy (NM), a muscle disorder characterized by muscle weakness with limited treatment options. We created a mouse model with a missense mutation p.Ser6366Ile and a deletion of NEB exon 55, the Compound-Het model that resembles typical NM. We show that Compound-Het mice are growth-retarded and have muscle weakness. Muscles have a reduced myofibrillar fractional-area and sarcomeres are disorganized, contain rod bodies, and have longer thin filaments. In contrast to nebulin-based severe NM where haplo-insufficiency is the disease driver, Compound-Het mice express normal amounts of nebulin. X-ray diffraction revealed that the actin filament is twisted with a larger radius, that tropomyosin and troponin behavior is altered, and that the myofilament spacing is increased. The unique disease mechanism of nebulin-based typical NM reveals novel therapeutic targets.
Asunto(s)
Proteínas Musculares/genética , Mutación Missense , Miofibrillas/metabolismo , Miopatías Nemalínicas/genética , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animales , Heterocigoto , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Miofibrillas/patología , Miofibrillas/ultraestructura , Miopatías Nemalínicas/metabolismo , Sarcómeros/metabolismo , Sarcómeros/patología , Sarcómeros/ultraestructura , Tropomiosina/química , Tropomiosina/metabolismo , Troponina/química , Troponina/metabolismo , Difracción de Rayos XRESUMEN
OBJECTIVE: To investigate single muscle fiber contractile performance in muscle biopsies from patients with facioscapulohumeral muscular dystrophy (FSHD), one of the most common hereditary muscle disorders. METHODS: We collected 50 muscle biopsies (26 vastus lateralis, 24 tibialis anterior) from 14 patients with genetically confirmed FSHD and 12 healthy controls. Single muscle fibers (n = 547) were isolated for contractile measurements. Titin content and titin phosphorylation were examined in vastus lateralis muscle biopsies. RESULTS: Single muscle fiber specific force was intact at saturating and physiologic calcium concentrations in all FSHD biopsies, with (FSHDFAT) and without (FSHDNORMAL) fatty infiltration, compared to healthy controls. Myofilament calcium sensitivity of force is increased in single muscle fibers obtained from FSHD muscle biopsies with increased fatty infiltration, but not in FSHD muscle biopsies without fatty infiltration (pCa50: 5.77-5.80 in healthy controls, 5.74-5.83 in FSHDNORMAL, and 5.86-5.90 in FSHDFAT single muscle fibers). Cross-bridge cycling kinetics at saturating calcium concentrations and myofilament cooperativity did not differ from healthy controls. Development of single muscle fiber passive tension was changed in all FSHD vastus lateralis and in FSHDFAT tibialis anterior, resulting in increased fiber stiffness. Titin content was increased in FSHD vastus lateralis biopsies; however, titin phosphorylation did not differ from healthy controls. CONCLUSION: Muscle weakness in patients with FSHD is not caused by reduced specific force of individual muscle fibers, even in severely affected tissue with marked fatty infiltration of muscle tissue.
Asunto(s)
Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Distrofia Muscular Facioescapulohumeral/fisiopatología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, NebY2303H, Y935X, has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, NebY2303H,Y935X mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.
Asunto(s)
Codón sin Sentido , Proteínas Musculares/genética , Mutación Missense , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/ultraestructuraRESUMEN
The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology.
Asunto(s)
Proteínas Musculares/metabolismo , Relajación Muscular , Miopatías Nemalínicas/metabolismo , Sarcómeros/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Sarcómeros/patología , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
BACKGROUND: Titin is an elastic sarcomeric filament that has been proposed to play a key role in mechanosensing and trophicity of muscle. However, evidence for this proposal is scarce due to the lack of appropriate experimental models to directly test the role of titin in mechanosensing. METHODS: We used unilateral diaphragm denervation (UDD) in mice, an in vivo model in which the denervated hemidiaphragm is passively stretched by the contralateral, innervated hemidiaphragm and hypertrophy rapidly occurs. RESULTS: In wildtype mice, the denervated hemidiaphragm mass increased 48 ± 3% after 6 days of UDD, due to the addition of both sarcomeres in series and in parallel. To test whether titin stiffness modulates the hypertrophy response, RBM20ΔRRM and TtnΔIAjxn mouse models were used, with decreased and increased titin stiffness, respectively. RBM20ΔRRM mice (reduced stiffness) showed a 20 ± 6% attenuated hypertrophy response, whereas the TtnΔIAjxn mice (increased stiffness) showed an 18 ± 8% exaggerated response after UDD. Thus, muscle hypertrophy scales with titin stiffness. Protein expression analysis revealed that titin-binding proteins implicated previously in muscle trophicity were induced during UDD, MARP1 & 2, FHL1, and MuRF1. CONCLUSIONS: Titin functions as a mechanosensor that regulates muscle trophicity.
Asunto(s)
Mecanotransducción Celular , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Proteínas Quinasas/genética , Animales , Modelos Animales de Enfermedad , Electromiografía , Humanos , Inmunohistoquímica , Ratones , Músculo Esquelético/fisiopatología , Atrofia Muscular/diagnóstico , Atrofia Muscular/fisiopatología , Proteínas Quinasas/metabolismo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , UltrasonografíaRESUMEN
Titin, the largest protein known, forms an elastic myofilament in the striated muscle sarcomere. To establish titin's contribution to skeletal muscle passive stiffness, relative to that of the extracellular matrix, a mouse model was created in which titin's molecular spring region was shortened by deleting 47 exons, the TtnΔ112-158 model. RNA sequencing and super-resolution microscopy predicts a much stiffer titin molecule. Mechanical studies with this novel mouse model support that titin is the main determinant of skeletal muscle passive stiffness. Unexpectedly, the in vivo sarcomere length working range was shifted to shorter lengths in TtnΔ112-158 mice, due to a ~ 30% increase in the number of sarcomeres in series (longitudinal hypertrophy). The expected effect of this shift on active force generation was minimized through a shortening of thin filaments that was discovered in TtnΔ112-158 mice. Thus, skeletal muscle titin is the dominant determinant of physiological passive stiffness and drives longitudinal hypertrophy. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).