Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Small ; 20(36): e2401413, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733238

RESUMEN

Advancing the field of photocatalysis requires the elucidation of structural properties that underpin the photocatalytic properties of promising materials. The focus of the present study is layered, Bi-rich bismuth oxyhalides, which are widely studied for photocatalytic applications yet poorly structurally understood, due to high levels of disorder, nano-sized domains, and the large number of structurally similar compounds. By connecting insights from multiple scattering techniques, utilizing electron-, X-ray- and neutron probes, the crystal phase of the synthesized materials is allocated as layered Bi24O31X10 (X = Cl, Br), albeit with significant deviation from the reported 3D crystalline model. The materials comprise anisotropic platelet-shaped crystalline domains, exhibiting significant in-plane ordering in two dimensions but disorder and an ultra-thin morphology in the layer stacking direction. Increased synthesis pH tailored larger, more ordered crystalline domains, leading to longer excited state lifetimes determined via femtosecond transient absorption spectroscopy (fs-TAS). Although this likely contributes to improved photocatalytic properties, assessed via the photooxidation of benzylamine, increasing the overall surface area facilitated the most significant improvement in photocatalytic performance. This study, therefore, enabled both phase allocation and a nuanced discussion of the structure-property relationship for complicated, ultra-thin photocatalysts.

2.
J Am Chem Soc ; 143(31): 12053-12062, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324323

RESUMEN

The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. To fully exploit linker rotation, such as in the form of molecular machines, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion. Here, we show that for MIL-53, a topology with closely spaced rotors, the phenylene functionalization allows researchers to tune the rotors' steric environment, shifting linker rotation from completely static to rapid motions at frequencies above 100 MHz. For steric interactions that start to inhibit independent rotor motion, we identify for the first time the emergence of coupled rotation modes in linker dynamics. These findings pave the way for function-specific engineering of gear-like cooperative motion in MOFs.

3.
Chemistry ; 26(16): 3564-3570, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31913529

RESUMEN

A modulated synthesis approach based on the chelating properties of oxalic acid (H2 C2 O4 ) is presented as a robust and versatile method to achieve highly crystalline Al-based metal-organic frameworks. A comparative study on this method and the already established modulation by hydrofluoric acid was conducted using MIL-53 as test system. The superior performance of oxalic acid modulation in terms of crystallinity and absence of undesired impurities is explained by assessing the coordination modes of the two modulators and the structural features of the product. The validity of our approach was confirmed for a diverse set of Al-MOFs, namely X-MIL-53 (X=OH, CH3 O, Br, NO2 ), CAU-10, MIL-69, and Al(OH)ndc (ndc=1,4-naphtalenedicarboxylate), highlighting the potential benefits of extending the use of this modulator to other coordination materials.

4.
Langmuir ; 33(10): 2477-2484, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28186771

RESUMEN

In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles.

5.
Langmuir ; 33(17): 4157-4163, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28402637

RESUMEN

The surface-induced polymerization of a chromophore-functionalized monomer was probed in situ for the first time using a nonlinear optical technique, second-harmonic generation. During the first hours of the polymerization reaction, dramatic changes in the tilt angle of the chromophore-functionalized side groups were observed. Following evaluation of the nonlinear optical data with those obtained from atomic force microscopy and ultraviolet-visible, we conclude that second-harmonic generation efficiently probes the polymerization reaction and the conformational changes of the surface-grafted polymer. With polymerization time, the conformation of the surface-tethered polymer changes from a conformation with the polymer backbone and its side groups flat on the surface, i.e., a "pancake" conformation, to a conformation where the polymer backbone is stretched away combined with tilted side groups or an enlarged tilt angle distribution, i.e., a "brush-type" conformation.

9.
Chempluschem ; 89(9): e202400134, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38804190

RESUMEN

Ultrafast spectroscopy can be used to study dynamic processes on femtosecond to nanosecond timescales, but is typically used for photoinduced processes. Several materials can induce ultrafast temperature rises upon absorption of femtosecond laser pulses, in principle allowing to study thermally activated processes, such as (catalytic) reactions, phase transitions, and conformational changes. Gold-silica core-shell nanoparticles are particularly interesting for this, as they can be used in a wide range of media and are chemically inert. Here we computationally model the temporal and spatial temperature profiles of gold nanoparticles with and without silica shell in liquid and gas media. Fast rises in temperature within tens of picoseconds are always observed. This is fast enough to study many of the aforementioned processes. We also validate our results experimentally using a poly(urethane-urea) exhibiting a temperature-dependent hydrogen bonding network, which shows local temperatures above 90 °C are reached on this timescale. Moreover, this experiment shows the hydrogen bond breaking in such polymers occurs within tens of picoseconds.

10.
ACS Appl Mater Interfaces ; 16(26): 34010-34019, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38914515

RESUMEN

Covalent organic frameworks (COFs) are ideal platforms to spatially control the integration of multiple molecular motifs throughout a single nanoporous framework. Despite this design flexibility, COFs are typically synthesized using only two monomers. One bears the functional motif for the envisioned application, while the other is used as an inert connecting building block. Integrating more than one functional motif extends the functionality of COFs immensely, which is particularly useful for multistep reactions such as electrochemical reduction of CO2. In this systematic study, we synthesized five Ni(II)- and Zn(II)-porphyrin-based COFs, including two pure component COFs (Ni100 and Zn100) and three mixed Ni/Zn-COFs (Ni75/Zn25, Ni50/Zn50, and Ni25/Zn75). Among these, the Ni50/Zn50-COF exhibited the highest catalytic performance for the electroreduction of CO2 to CO and formate at -0.6 V vs RHE, as was observed in an H-cell. The catalytic performance of the COF catalysts was further extended to a zero-gap membrane electrode assembly (MEA) operation where, utilizing Ni50/Zn50, CH4 was detected along with CO and formate at a high current density of 150 mA cm-2. In contrast, under these conditions predominantly H2 and CO were detected at Ni100 and Zn100 respectively, indicating a clear synergistic effect between the Ni- and Zn-porphyrin units.

11.
Adv Mater ; 36(12): e2210050, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36651201

RESUMEN

Several metal-organic frameworks (MOFs) excel in harvesting water from the air or as heat pumps as they show a steep increase in water uptake at 10-30 % relative humidity (RH%). A precise understanding of which structural characteristics govern such behavior is lacking. Herein, CAU-10-H and CAU-10-CH3 are studied with H, CH3 corresponding to the functions grafted to the organic linker. CAU-10-H shows a steep water uptake ≈18 RH% of interest for water harvesting, yet the subtle replacement of H by CH3 in the organic linker drastically changes the water adsorption behavior to less steep water uptake at much higher humidity values. The materials' structural deformation and water ordering during adsorption with in situ sum-frequency generation, in situ X-ray diffraction, and molecular simulations are unraveled. In CAU-10-H, an energetically favorable water cluster is formed in the hydrophobic pore, tethered via H-bonds to the framework µï£¿OH groups, while for CAU-10-CH3, such a favorable cluster cannot form. By relating the findings to the features of water adsorption isotherms of a series of MOFs, it is concluded that favorable water adsorption occurs when sites of intermediate hydrophilicity are present in a hydrophobic structure, and the formation of energetically favorable water clusters is possible.

12.
ACS Appl Mater Interfaces ; 15(24): 29186-29194, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294346

RESUMEN

In order to capture and separate CO2 from the air or flue gas streams through nanoporous adsorbents, the influence of the humidity in these streams has to be taken into account as it hampers the capture process in two main ways: (1) water preferentially binds to CO2 adsorption sites and lowers the overall capacity, and (2) water causes hydrolytic degradation and pore collapse of the porous framework. Here, we have used a water-stable polyimide covalent organic framework (COF) in N2/CO2/H2O breakthrough studies and assessed its performance under varying levels of relative humidity (RH). We discovered that at limited relative humidity, the competitive binding of H2O over CO2 is replaced by cooperative adsorption. For some conditions, the CO2 capacity was significantly higher under humid versus dry conditions (e.g., a 25% capacity increase at 343 K and 10% RH). These results in combination with FT-IR studies on equilibrated COFs at controlled RH values allowed us to assign the effect of cooperative adsorption to CO2 being adsorbed on single-site adsorbed water. Additionally, once water cluster formation sets in, loss of CO2 capacity is inevitable. Finally, the polyimide COF used in this research retained performance after a total exposure time of >75 h and temperatures up to 403 K. This research provides insight in how cooperative CO2-H2O can be achieved and as such provides directions for the development of CO2 physisorbents that can function in humid streams.

13.
ACS Appl Mater Interfaces ; 15(47): 54590-54601, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37966899

RESUMEN

Titanium-based metal-organic framework, NH2-MIL-125(Ti), has been widely investigated for photocatalytic applications but has low activity in the hydrogen evolution reaction (HER). In this work, we show a one-step low-cost postmodification of NH2-MIL-125(Ti) via impregnation of Co(NO3)2. The resulting Co@NH2-MIL-125(Ti) with embedded single-site CoII species, confirmed by XPS and XAS measurements, shows enhanced activity under visible light exposure. The increased H2 production is likely triggered by the presence of active CoI transient sites detected upon collection of pump-flow-probe XANES spectra. Furthermore, both photocatalysts demonstrated a drastic increase in HER performance after consecutive reuse while maintaining their structural integrity and consistent H2 production. Via thorough characterization, we revealed two mechanisms for the formation of highly active proton reduction sites: nondestructive linker elimination resulting in coordinatively unsaturated Ti sites and restructuring of single CoII sites. Overall, this straightforward manner of confinement of CoII cocatalysts within NH2-MIL-125(Ti) offers a highly stable visible-light-responsive photocatalyst.

14.
J Am Chem Soc ; 134(20): 8314-7, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22578194

RESUMEN

The metal-organic framework NH(2)-MIL-53(Al) is the first solid-state material displaying nonlinear optical switching due to a conformational change upon breathing. A switching contrast of at least 38 was observed. This transition originates in the restrained linker mobility in the very narrow pore configuration.

15.
Anal Chem ; 84(15): 6378-85, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22780861

RESUMEN

We present a methodology based on polarization-controlled second-harmonic generation microscopy that allows one to determine the point group symmetry of noncentrosymmetric structures in situ and in vivo in complex systems regardless of the occurrence of periodicity. Small, randomly oriented structures suffice for the analysis, which is based on simple recognition of observables in four tests. These can be performed in any standard SHG-microscope that allows polarization control of the incident and detected light. The method is resilient to birefringence and light dispersion.

16.
Anal Chem ; 84(15): 6386-90, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22780887

RESUMEN

In this work, the theory presented in part 1 (van der Veen, M. A.; Vermoortele, F.; De Vos, D. E.; Verbiest, T. Anal. Chem. 2012, DOI: 10.1021/ac300936q) for determination of the point groups symmetry based on easily distinguishable observables present in simple polarization dependent tests in second harmonic generation microscopy is tested. It is shown experimentally that the methodology can be applied for point group symmetry determination for a variety of structures among which molecular crystals and host/guest systems where the symmetry of the guest molecules cannot be inferred from conventional diffraction methods. Uniquely, this second-harmonic generation based method can discriminate between chiral and achiral structures regardless of their orientation. The method allows for in situ and in vivo studies with spatial resolution.

17.
ACS Appl Mater Interfaces ; 14(45): 50803-50814, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36321950

RESUMEN

Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials with very high structural tunability. They possess a very low dielectric permittivity εr due to their porosity and hence are favorable for piezoelectric energy harvesting. Even though they have huge potential as piezoelectric materials, a detailed analysis and structure-property relationship of the piezoelectric properties in MOFs are lacking so far. This work focuses on a class of cubic non-centrosymmetric MOFs, namely, zeolitic imidazolate frameworks (ZIFs) to rationalize how the variation of different building blocks of the structure, that is, metal node and linker substituents affect the piezoelectric constants. The piezoelectric tensor for the ZIFs is computed from ab initio theoretical methods. From the calculations, we analyze the different contributions to the final piezoelectric constant d14, namely, the clamped ion (e140) and the internal strain (e14int) contributions and the mechanical properties. For the studied ZIFs, even though e14 (e140 + e14int) is similar for all ZIFs, the resultant piezoelectric coefficient d14 calculated from piezoelectric constant e14 and elastic compliance constant s44 varies significantly among the different structures. It is the largest for CdIF-1 (Cd2+ and -CH3 linker substituent). This is mainly due to the higher elasticity or flexibility of the framework. Interestingly, the magnitude of d14 for CdIF-1 is higher than II-VI inorganic piezoelectrics and of a similar magnitude as the quintessential piezoelectric polymer polyvinylidene fluoride.

18.
Chem Commun (Camb) ; 57(8): 1022-1025, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406176

RESUMEN

The ease with which molecular building blocks can be ordered in metal-organic frameworks is an invaluable asset for many potential applications. In this work, we exploit this inherent order to produce chromatic polarizers based on visible-light linear dichroism via cobalt paddlewheel chromophores.

19.
Chem Mater ; 33(3): 818-833, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33603278

RESUMEN

Covalent organic frameworks (COFs) are an emerging material family having several potential applications. Their porous framework and redox-active centers enable gas/ion adsorption, allowing them to function as safe, cheap, and tunable electrode materials in next-generation batteries, as well as CO2 adsorption materials for carbon-capture applications. Herein, we develop four polyimide COFs by combining aromatic triamines with aromatic dianhydrides and provide detailed structural and electrochemical characterization. Through density functional theory (DFT) calculations and powder X-ray diffraction, we achieve a detailed structural characterization, where DFT calculations reveal that the imide bonds prefer to form at an angle with one another, breaking the 2D symmetry, which shrinks the pore width and elongates the pore walls. The eclipsed perpendicular stacking is preferable, while sliding of the COF sheets is energetically accessible in a relatively flat energy landscape with a few metastable regions. We investigate the potential use of these COFs in CO2 adsorption and electrochemical applications. The adsorption and electrochemical properties are related to the structural and chemical characteristics of each COF, giving new insights for advanced material designs. For CO2 adsorption specifically, the two best performing COFs originated from the same triamine building block, which-in combination with force-field calculations-revealed unexpected structure-property relationships. Specific geometries provide a useful framework for Na-ion intercalation with retainable capacities and stable cycle life at a relatively high working potential (>1.5 V vs Na/Na+). Although this capacity is low compared to conventional inorganic Li-ion materials, we show as a proof of principle that these COFs are especially promising for sustainable, safe, and stable Na-aqueous batteries due to the combination of their working potentials and their insoluble nature in water.

20.
J Am Chem Soc ; 132(19): 6630-1, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20426453

RESUMEN

For the first time, second-harmonic generation microscopy (SHGM) has been employed to study zeolites. Large ZSM-5 crystals filled with p-nitroaniline (PNA) dipoles have been visualized. It is shown that SHGM can discriminate between the straight b-pores and the sinusoidal a-pores of this zeolite, thus revealing the intergrown structure of these crystals. Moreover, it is shown that dipole chains are formed not only in the b-pores but also in the a-pores. PNA only assembles into dipole chains of parallel orientation in those pores that are directly accessible from the outer surface. The area in which this PNA ordering prevails is limited to a strip near the outer surface of the zeolite crystal. A rationalization for these two observations is offered.


Asunto(s)
Compuestos de Anilina/química , Microscopía , Zeolitas/química , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA