Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 117(2): 361-9, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23249289

RESUMEN

Steady-state and picosecond time-resolved X-ray absorption spectroscopy is used to study the ground and lowest triplet states of [ReX(CO)(3)(bpy)](n+), X = Etpy (n = 1), Cl, or Br (n = 0). We demonstrate that the transient spectra at both the Re L(3)- and Br K-edges show the emergence of a pre-edge feature, absent in the ground-state spectrum, which is associated with the electron hole created in the highest occupied molecular orbital following photoexcitation. Importantly, these features have the same dynamics, confirming previous predictions that the low-lying excited states of these complexes involve a two-center charge transfer from both the Re and the ligand, X. We also demonstrate that the DFT optimized ground and excited structures allow us to reproduce the experimental XANES and EXAFS spectra. The ground-state structural refinement shows that the Br atom contributes very little to the latter, whereas the Re-C-O scattering paths are dominant due to the so-called focusing effect. For the excited-state spectrum, the Re-X bond undergoes one of the largest changes but still remains a weak contribution to the photoinduced changes of the EXAFS spectrum.

2.
J Chem Phys ; 130(12): 124520, 2009 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-19334864

RESUMEN

We present a novel analysis of time-resolved extended x-ray absorption fine structure (EXAFS) spectra based on the fitting of the experimental transients obtained from optical pump/x-ray probe experiments. We apply it to the analysis of picosecond EXAFS data on aqueous [Fe(II)(bpy)(3)](2+), which undergoes a light induced conversion from its low-spin (LS) ground state to the short-lived (tau approximately 650 ps) excited high-spin (HS) state. A series of EXAFS spectra were simulated for a collection of possible HS structures from which the ground state fit spectrum was subtracted to generate transient difference absorption (TA) spectra. These are then compared with the experimental TA spectrum using a least-squares statistical analysis to derive the structural change. This approach reduces the number of required parameters by cancellation in the differences. It also delivers a unique solution for both the fractional population and the extracted excited state structure. We thus obtain a value of the Fe-N bond elongation in the HS state with subpicometer precision (0.203+/-0.008 A).


Asunto(s)
Compuestos Ferrosos/química , Absorción , Análisis Espectral , Factores de Tiempo , Agua/química , Rayos X
3.
Science ; 323(5913): 489-92, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19074309

RESUMEN

X-ray absorption spectroscopy is a powerful probe of molecular structure, but it has previously been too slow to track the earliest dynamics after photoexcitation. We investigated the ultrafast formation of the lowest quintet state of aqueous iron(II) tris(bipyridine) upon excitation of the singlet metal-to-ligand-charge-transfer (1MLCT) state by femtosecond optical pump/x-ray probe techniques based on x-ray absorption near-edge structure (XANES). By recording the intensity of a characteristic XANES feature as a function of laser pump/x-ray probe time delay, we find that the quintet state is populated in about 150 femtoseconds. The quintet state is further evidenced by its full XANES spectrum recorded at a 300-femtosecond time delay. These results resolve a long-standing issue about the population mechanism of quintet states in iron(II)-based complexes, which we identify as a simple 1MLCT-->3MLCT-->5T cascade from the initially excited state. The time scale of the 3MLCT-->5T relaxation corresponds to the period of the iron-nitrogen stretch vibration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA