Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomaterials ; 24(15): 2623-9, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12726716

RESUMEN

RF magnetron sputter deposition was used to produce 0.1, 1.0 and 4.0 microm thick Ca-P coatings on TiO(2)-blasted titanium discs. Half of the as-sputtered coated specimens were subjected to an additional infrared heat treatment for 30s at 425-475 degrees C. X-ray diffraction demonstrated that infrared radiation changed the amorphous 4 microm sputtered coatings into an amorphous-crystalline structure, while the amorphous 0.1 and 1 microm changed in a crystalline apatite structure with the presents of tetracalciumphosphate as a second phase. Scanning electron microscopically examination of the sputtered coatings revealed that annealing of the 4 microm thick coatings resulted in the appearance of small cracks. Subsequently, the discs were implanted subcutaneous into the back of rabbits. After 1, 4, 8 and 12 weeks of implantation, the implants were retrieved and prepared for histological and physicochemical evaluation. Histological evaluation revealed that the tissue response to all coated implants was very uniform. A very thin connective tissue capsule surrounded all implants. The capsule was usually free of inflammatory cells. At the interface, there was a close contact between the capsule and implant surface and no inflammatory cells were seen. Physicochemical evaluation showed that the 0.1 and 1 microm thick amorphous coatings had disappeared within 1 week of implantation. On the other hand, the 4 microm thick amorphous phase disappeared during the implantation periods, which was followed by the precipitation of a crystalline carbonate apatite. Further, at all implantation periods the heat-treated 1 and 4 microm thick coatings could be detected. Occasionally, a granular precipitate was deposited on the heat-treated 4 microm thick coating. Fourier transform infrared spectroscopy showed the formation of carbonate apatite (CO(3)-AP) on the 4 microm thick amorphous coating and on the heat-treated specimens. On basis of our findings, we conclude that 1 microm thick heat-treated Ca-P sputter coating on roughened titanium implants appear to be of sufficient thickness to show bioactive properties, under in vivo conditions.


Asunto(s)
Fosfatos de Calcio/química , Materiales Biocompatibles Revestidos/química , Prótesis e Implantes , Titanio/química , Animales , Femenino , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Conejos , Ondas de Radio , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X
2.
J Biomed Mater Res B Appl Biomater ; 66(1): 447-56, 2003 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12808607

RESUMEN

This in vivo study evaluated the fixation of two types of titanium implants with the use of an injectable calcium-phosphate (CaP) cement. The cement was either used to create a cement mantle (Type A implant) or as an additive to press-fit placed titanium plasma sprayed implants (Type B implant). The implants were placed in trabecular bone of the medial femoral condyle of goats and left in place for 2 and 10 weeks. Mechanical evaluation of the implant fixation was done by torque testing. This showed that for the Type A implants the calcium-phosphate cement's performance was significantly inferior (P < 0.05) to that of polymethylmethacrylate cement fixation. For the two-week Type B implants a significant increase (P < 0.05) in failure load was found for calcium-phosphate cemented implants compared with just press-fitted Type B implants. Histological evaluation revealed that for Type A implants, failure during torque testing occurred at the implant-cement interface. In contrast, for Type B implants, failure occurred in the bone-implant interface for press-fit-placed devices and in the cement layer for CaP-cemented devices. Further, the CaP cement was found to be overgrown with new formed bone already after 2 weeks of implantation. The cement showed resorption due to regular bone remodeling. On the basis of these observations, it was concluded that the use of injectable CaP cement might facilitate earlier loading of press-fit inserted titanium implants. Nevertheless, the results have to be confirmed in dynamical mechanical as well as loaded in vivo studies.


Asunto(s)
Cementos para Huesos , Fosfatos de Calcio , Prótesis e Implantes , Titanio , Animales , Fenómenos Biomecánicos , Fosfatos de Calcio/administración & dosificación , Femenino , Cabras , Inyecciones , Ensayo de Materiales , Oseointegración , Polimetil Metacrilato , Factores de Tiempo
3.
J Biomed Mater Res ; 61(1): 9-18, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12001240

RESUMEN

The aim of this study was to investigate the physicochemical, biological, and handling properties of a new developed calcium phosphate (Ca-P) cement when implanted in trabecular bone. Ca-P cement consisting of a powder and a liquid phase was implanted as a paste into femoral trabecular bone of goats for 3 days and 2, 8, 16, and 24 weeks. The cement was tested using three clinically relevant liquid-to-powder ratios. Polymethylmethacrylate bone cement, routinely used in orthopedics, was used as a control. The Ca-P cement was easy to handle and was fast setting with good cohesion when in contact with body fluids. X-ray diffraction at the different implantation periods showed that the cement had set as an apatite and remained stable over time. Histological evaluation after 2 weeks, performed on 10 microm un-decalcified sections, showed abundant bone apposition on the cement surface without any inflammatory reaction or fibrous encapsulation. At later time points, the Ca-P cement implants were totally covered by a thin layer of bone. Osteoclast-like cells, as present at the interface, had resorbed parts of the cement mass. At locations where Ca-P cement was resorbed, new bone was formed without loss of integrity between the bone bed and the cement. This demonstrated the osteotransductive property of the cement, i.e., resorption of the material by osteoclast-like cells, directly followed by the formation of new bone. Histological and histomorphometrical evaluation did not show any significant differences between the Ca-P cement implanted at the three different liquid/powder ratios. The results indicate that the investigated Ca-P cement is biocompatible, osteoconductive, as well as osteotransductive and is a candidate material for use as a bone substitute.


Asunto(s)
Materiales Biocompatibles , Cementos para Huesos , Regeneración Ósea , Huesos/metabolismo , Fosfatos de Calcio , Animales , Materiales Biocompatibles/química , Cementos para Huesos/química , Cementos para Huesos/metabolismo , Huesos/ultraestructura , Fosfatos de Calcio/química , Femenino , Colorantes Fluorescentes , Cabras , Factores de Tiempo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA