Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(26): e2300387120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339200

RESUMEN

Transitions between wake and sleep states show a progressive pattern underpinned by local sleep regulation. In contrast, little evidence is available on non-rapid eye movement (NREM) to rapid eye movement (REM) sleep boundaries, considered as mainly reflecting subcortical regulation. Using polysomnography (PSG) combined with stereoelectroencephalography (SEEG) in humans undergoing epilepsy presurgical evaluation, we explored the dynamics of NREM-to-REM transitions. PSG was used to visually score transitions and identify REM sleep features. SEEG-based local transitions were determined automatically with a machine learning algorithm using features validated for automatic intra-cranial sleep scoring (10.5281/zenodo.7410501). We analyzed 2988 channel-transitions from 29 patients. The average transition time from all intracerebral channels to the first visually marked REM sleep epoch was 8 s ± 1 min 58 s, with a great heterogeneity between brain areas. Transitions were observed first in the lateral occipital cortex, preceding scalp transition by 1 min 57 s ± 2 min 14 s (d = -0.83), and close to the first sawtooth wave marker. Regions with late transitions were the inferior frontal and orbital gyri (1 min 1 s ± 2 min 1 s, d = 0.43, and 1 min 1 s ± 2 min 5 s, d = 0.43, after scalp transition). Intracranial transitions were earlier than scalp transitions as the night advanced (last sleep cycle, d = -0.81). We show a reproducible gradual pattern of REM sleep initiation, suggesting the involvement of cortical mechanisms of regulation. This provides clues for understanding oneiric experiences occurring at the NREM/REM boundary.


Asunto(s)
Sueño REM , Sueño , Humanos , Sueño REM/fisiología , Sueño/fisiología , Corteza Cerebral/fisiología , Polisomnografía , Lóbulo Frontal , Electroencefalografía , Fases del Sueño/fisiología
2.
Brain ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875488

RESUMEN

Epileptic seizures recorded with stereoelectroencephalography (SEEG) can take a fraction of a second or several seconds to propagate from one region to another. What explains such propagation patterns? We combine tractography and SEEG to determine the relationship between seizure propagation and the white matter architecture and to describe seizure propagation mechanisms. Patient-specific spatiotemporal seizure propagation maps were combined with tractography from diffusion imaging of matched subjects from the Human Connectome Project. The onset of seizure activity was marked on a channel-by-channel basis by two board-certified neurologists for all channels involved in the seizure. We measured the tract connectivity (number of tracts) between regions-of-interest pairs among the seizure onset zone, regions of seizure spread, and non-involved regions. We also investigated how tract-connected the seizure onset zone is to regions of early seizure spread compared to regions of late spread. Comparisons were made after correcting for differences in distance. Sixty-nine seizures were marked across 26 patients with drug-resistant epilepsy; 11 were seizure free after surgery (Engel IA) and 15 were not (Engel IB-IV). The seizure onset zone was more tract connected to regions of seizure spread than to non-involved regions (p<0.0001); however, regions of seizure spread were not differentially tract-connected to other regions of seizure spread compared to non-involved regions. In seizure free patients only, regions of seizure spread were more tract connected to the seizure onset zone than to other regions of spread (p<0.0001). Over the temporal evolution of a seizure, the seizure onset zone was significantly more tract connected to regions of early spread compared to regions of late spread in seizure free patients only (p<0.0001). By integrating information on structure, we demonstrate that seizure propagation is likely mediated by white matter tracts. The pattern of connectivity between seizure onset zone, regions of spread and non-involved regions demonstrates that the onset zone may be largely responsible for seizures propagating throughout the brain, rather than seizures propagating to intermediate points, from which further propagation takes place. Our findings also suggest that seizure propagation over seconds may be the result of a continuous bombardment of action potentials from the seizure onset zone to regions of spread. In non-seizure free patients, the paucity of tracts from the presumed seizure onset zone to regions of spread suggests that the onset zone was missed. Fully understanding the structure-propagation relationship may eventually provide insight into selecting the correct targets for epilepsy surgery.

3.
Neuroimage ; 274: 120158, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37149236

RESUMEN

BACKGROUND: Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources along the cortical surface is still uncertain and requires validation. METHOD: We validated the ability of MSI to estimate the background resting state activity of 45 healthy participants by comparing it to the intracranial EEG (iEEG) atlas (https://mni-open-ieegatlas. RESEARCH: mcgill.ca/). First, we applied wavelet-based Maximum Entropy on the Mean (wMEM) as an MSI technique. Next, we converted MEG source maps into intracranial space by applying a forward model to the MEG-reconstructed source maps, and estimated virtual iEEG (ViEEG) potentials on each iEEG channel location; we finally quantitatively compared those with actual iEEG signals from the atlas for 38 regions of interest in the canonical frequency bands. RESULTS: The MEG spectra were more accurately estimated in the lateral regions compared to the medial regions. The regions with higher amplitude in the ViEEG than in the iEEG were more accurately recovered. In the deep regions, MEG-estimated amplitudes were largely underestimated and the spectra were poorly recovered. Overall, our wMEM results were similar to those obtained with minimum norm or beamformer source localization. Moreover, the MEG largely overestimated oscillatory peaks in the alpha band, especially in the anterior and deep regions. This is possibly due to higher phase synchronization of alpha oscillations over extended regions, exceeding the spatial sensitivity of iEEG but detected by MEG. Importantly, we found that MEG-estimated spectra were more comparable to spectra from the iEEG atlas after the aperiodic components were removed. CONCLUSION: This study identifies brain regions and frequencies for which MEG source analysis is likely to be reliable, a promising step towards resolving the uncertainty in recovering intracerebral activity from non-invasive MEG studies.


Asunto(s)
Electrocorticografía , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Electrocorticografía/métodos , Encéfalo , Mapeo Encefálico/métodos , Electroencefalografía/métodos
4.
Hum Brain Mapp ; 44(17): 5982-6000, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37750611

RESUMEN

Simultaneous electroencephalography-functional MRI (EEG-fMRI) is a unique and noninvasive method for epilepsy presurgical evaluation. When selecting voxels by null-hypothesis tests, the conventional analysis may overestimate fMRI response amplitudes related to interictal epileptic discharges (IEDs), especially when IEDs are rare. We aimed to estimate fMRI response amplitudes represented by blood oxygen level dependent (BOLD) percentage changes related to IEDs using a hierarchical model. It involves the local and distributed hemodynamic response homogeneity to regularize estimations. Bayesian inference was applied to fit the model. Eighty-two epilepsy patients who underwent EEG-fMRI and subsequent surgery were included in this study. A conventional voxel-wise general linear model was compared to the hierarchical model on estimated fMRI response amplitudes and on the concordance between the highest response cluster and the surgical cavity. The voxel-wise model overestimated fMRI responses compared to the hierarchical model, evidenced by a practically and statistically significant difference between the estimated BOLD percentage changes. Only the hierarchical model differentiated brief and long-lasting IEDs with significantly different BOLD percentage changes. Overall, the hierarchical model outperformed the voxel-wise model on presurgical evaluation, measured by higher prediction performance. When compared with a previous study, the hierarchical model showed higher performance metric values, but the same or lower sensitivity. Our results demonstrated the capability of the hierarchical model of providing more physiologically reasonable and more accurate estimations of fMRI response amplitudes induced by IEDs. To enhance the sensitivity of EEG-fMRI for presurgical evaluation, it may be necessary to incorporate more appropriate spatial priors and bespoke decision strategies.


Asunto(s)
Epilepsia , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Teorema de Bayes , Mapeo Encefálico/métodos , Oxígeno , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Electroencefalografía/métodos , Encéfalo/diagnóstico por imagen
5.
Epilepsia ; 63(11): 2725-2744, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35822919

RESUMEN

Simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) is a unique and noninvasive method for investigating epileptic activity. Interictal epileptiform discharge-related EEG-fMRI provides cortical and subcortical blood oxygen level-dependent (BOLD) signal changes specific to epileptic discharges. As a result, EEG-fMRI has revealed insights into generators and networks involved in epileptic activity in different types of epilepsy, demonstrating-for instance-the implication of the thalamus in human generalized spike and wave discharges and the role of the default mode network in absences and focal epilepsy, and has suggested a mechanism for the cortico-subcortical interactions in Lennox-Gastaut syndrome discharges. EEG-fMRI can find deep sources of epileptic activity not available to scalp EEG or magnetoencephalography, and provides critical new information to delineate the epileptic focus when considering surgical treatment or electrode implantation. In recent years, methodological advances, such as artifact removal and automatic detection of events, have rendered this method easier to implement, and its clinical potential has since been established by evidence of the impact of BOLD response on clinical decision-making and of the relationship between concordance of BOLD responses with extent of resection and surgical outcome. This review presents the recent developments in EEG-fMRI methodology and EEG-fMRI studies in different types of epileptic disorders as follows: EEG-fMRI acquisition, gradient and pulse artifact removal, statistical analysis, clinical applications, presurgical evaluation, altered physiological state in generalized genetic epilepsy, and pediatric EEG-fMRI studies.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Niño , Humanos , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Epilepsia/diagnóstico por imagen
6.
Epilepsia ; 63(2): 483-496, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34919741

RESUMEN

OBJECTIVE: The integration of high-frequency oscillations (HFOs; ripples [80-250 Hz], fast ripples [250-500 Hz]) in epilepsy evaluation is hampered by physiological HFOs, which cannot be reliably differentiated from pathological HFOs. We evaluated whether defining abnormal HFO rates by statistical comparison to region-specific physiological HFO rates observed in the healthy brain improves identification of the epileptic focus and surgical outcome prediction. METHODS: We detected HFOs in 151 consecutive patients who underwent stereo-electroencephalography and subsequent resective epilepsy surgery at two tertiary epilepsy centers. We compared how HFOs identified the resection cavity and predicted seizure-free outcome using two thresholds from the literature (HFO rate > 1/min; 50% of the total number of a patient's HFOs) and three thresholds based on normative rates from the Montreal Neurological Institute Open iEEG Atlas (https://mni-open-ieegatlas. RESEARCH: mcgill.ca/): global Atlas threshold, regional Atlas threshold, and regional + 10% threshold after regional Atlas correction. RESULTS: Using ripples, the regional + 10% threshold performed best for focus identification (77.3% accuracy, 27% sensitivity, 97.1% specificity, 80.6% positive predictive value [PPV], 78.2% negative predictive value [NPV]) and outcome prediction (69.5% accuracy, 58.6% sensitivity, 76.3% specificity, 60.7% PPV, 74.7% NPV). This was an improvement for focus identification (+1.1% accuracy, +17.0% PPV; p < .001) and outcome prediction (+12.0% sensitivity, +1.0% PPV; p = .05) compared to the 50% threshold. The improvement was particularly marked for foci in cortex, where physiological ripples are frequent (outcome: +35.3% sensitivity, +5.3% PPV; p = .014). In these cases, the regional + 10% threshold outperformed fast ripple rate > 1/min (+3.6% accuracy, +26.5% sensitivity, +21.6% PPV; p < .001) and seizure onset zone (+13.5% accuracy, +29.4% sensitivity, +17.0% PPV; p < .05-.01) for outcome prediction. Normalization did not improve the performance of fast ripples. SIGNIFICANCE: Defining abnormal HFO rates by statistical comparison to rates in healthy tissue overcomes an important weakness in the clinical use of ripples. It improves focus identification and outcome prediction compared to standard HFO measures, increasing their clinical applicability.


Asunto(s)
Epilepsia , Encéfalo/cirugía , Mapeo Encefálico , Electroencefalografía , Epilepsia/diagnóstico , Epilepsia/cirugía , Humanos , Convulsiones/cirugía
7.
J Neurosci ; 40(46): 8900-8912, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33055279

RESUMEN

Sawtooth waves (STW) are bursts of frontocentral slow oscillations recorded in the scalp electroencephalogram (EEG) during rapid eye movement (REM) sleep. Little is known about their cortical generators and functional significance. Stereo-EEG performed for presurgical epilepsy evaluation offers the unique possibility to study neurophysiology in situ in the human brain. We investigated intracranial correlates of scalp-detected STW in 26 patients (14 women) undergoing combined stereo-EEG/polysomnography. We visually marked STW segments in scalp EEG and selected stereo-EEG channels exhibiting normal activity for intracranial analyses. Channels were grouped in 30 brain regions. The spectral power in each channel and frequency band was computed during STW and non-STW control segments. Ripples (80-250 Hz) were automatically detected during STW and control segments. The spectral power in the different frequency bands and the ripple rates were then compared between STW and control segments in each brain region. An increase in 2-4 Hz power during STW segments was found in all brain regions, except the occipital lobe, with large effect sizes in the parietotemporal junction, the lateral and orbital frontal cortex, the anterior insula, and mesiotemporal structures. A widespread increase in high-frequency activity, including ripples, was observed concomitantly, involving the sensorimotor cortex, associative areas, and limbic structures. This distribution showed a high spatiotemporal heterogeneity. Our results suggest that STW are associated with widely distributed, but locally regulated REM sleep slow oscillations. By driving fast activities, STW may orchestrate synchronized reactivations of multifocal activities, allowing tagging of complex representations necessary for REM sleep-dependent memory consolidation.SIGNIFICANCE STATEMENT Sawtooth waves (STW) present as scalp electroencephalographic (EEG) bursts of slow waves contrasting with the low-voltage fast desynchronized activity of REM sleep. Little is known about their cortical origin and function. Using combined stereo-EEG/polysomnography possible only in the human brain during presurgical epilepsy evaluation, we explored the intracranial correlates of STW. We found that a large set of regions in the parietal, frontal, and insular cortices shows increases in 2-4 Hz power during scalp EEG STW, that STW are associated with a strong and widespread increase in high frequencies, and that these slow and fast activities exhibit a high spatiotemporal heterogeneity. These electrophysiological properties suggest that STW may be involved in cognitive processes during REM sleep.


Asunto(s)
Corteza Cerebral/fisiología , Electrocorticografía , Sueño REM/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polisomnografía , Fases del Sueño/fisiología , Análisis de Ondículas , Adulto Joven
8.
Hum Brain Mapp ; 42(15): 4869-4879, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34245061

RESUMEN

Optically pumped magnetometers (OPMs) are quickly widening the scopes of noninvasive neurophysiological imaging. The possibility of placing these magnetic field sensors on the scalp allows not only to acquire signals from people in movement, but also to reduce the distance between the sensors and the brain, with a consequent gain in the signal-to-noise ratio. These advantages make the technique particularly attractive to characterise sources of brain activity in demanding populations, such as children and patients with epilepsy. However, the technology is currently in an early stage, presenting new design challenges around the optimal sensor arrangement and their complementarity with other techniques as electroencephalography (EEG). In this article, we present an optimal array design strategy focussed on minimising the brain source localisation error. The methodology is based on the Cramér-Rao bound, which provides lower error bounds on the estimation of source parameters regardless of the algorithm used. We utilise this framework to compare whole head OPM arrays with commercially available electro/magnetoencephalography (E/MEG) systems for localising brain signal generators. In addition, we study the complementarity between EEG and OPM-based MEG, and design optimal whole head systems based on OPMs only and a combination of OPMs and EEG electrodes for characterising deep and superficial sources alike. Finally, we show the usefulness of the approach to find the nearly optimal sensor positions minimising the estimation error bound in a given cortical region when a limited number of OPMs are available. This is of special interest for maximising the performance of small scale systems to ad hoc neurophysiological experiments, a common situation arising in most OPM labs.


Asunto(s)
Mapeo Encefálico/instrumentación , Encéfalo/fisiología , Electroencefalografía/instrumentación , Magnetoencefalografía/instrumentación , Magnetometría/instrumentación , Adulto , Mapeo Encefálico/métodos , Mapeo Encefálico/normas , Electroencefalografía/métodos , Electroencefalografía/normas , Humanos , Magnetoencefalografía/métodos , Magnetoencefalografía/normas , Magnetometría/métodos , Magnetometría/normas
9.
Ann Neurol ; 87(2): 289-301, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31777112

RESUMEN

OBJECTIVE: Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle. METHODS: Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non-rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas. RESULTS: We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto-occipital than in frontal cortex. Moreover, deep-seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with >60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies. INTERPRETATION: This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open-access atlas will be a unique resource for research (https://mni-open-ieegatlas. RESEARCH: mcgill.ca). ANN NEUROL 2020;87:289-301.


Asunto(s)
Corteza Cerebral/fisiología , Electrocorticografía/métodos , Fases del Sueño/fisiología , Adolescente , Adulto , Mapeo Encefálico/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Neuroimage ; 213: 116748, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32194281

RESUMEN

Sleep spindles and K-complexes (KCs) are a hallmark of N2 sleep. While the functional significance of spindles is comparatively well investigated, there is still ongoing debate about the role of the KC: it is unclear whether it is a cortical response to an arousing stimulus (either external or internal) or whether it has sleep-promoting properties. Invasive intracranial EEG recordings from individuals with drug-resistant epilepsy offer a unique opportunity to study in-situ human brain physiology. To better understand the function of the KC, we aimed to (i) investigate the intracranial correlates of spontaneous scalp KCs, and (ii) compare the intracranial activity of scalp KCs associated or not with arousals. Whole-night recordings from adults with drug-resistant focal epilepsy who underwent combined intracranial-scalp EEG for pre-surgical evaluation at the Montreal Neurological Institute between 2010 and 2018 were selected. KCs were visually marked in the scalp and categorized according to the presence of microarousals: (i) Pre-microarousal KCs; (ii) KCs during an ongoing microarousal; and (iii) KCs without microarousal. Power in different spectral bands was computed to compare physiological intracranial EEG activity at the time of scalp KCs relative to the background, as well as to compare microarousal subcategories. A total of 1198 scalp KCs selected from 40 subjects were analyzed, resulting in 32,504 intracranial KC segments across 992 channels. Forty-seven percent of KCs were without microarousal, 30% were pre-microarousal, and 23% occurred during microarousals. All scalp KCs were accompanied by widespread cortical increases in delta band power (0.3-4 â€‹Hz) relative to the background: the highest percentages were observed in the parietal (60-65%) and frontal cortices (52-58%). Compared to KCs without microarousal, pre-microarousal KCs were accompanied by increases (66%) in beta band power (16-30 â€‹Hz) in the motor cortex, which was present before the peak of the KC. In addition, spatial distribution of spectral power changes following each KC without microarousal revealed that certain brain regions were associated with increases in delta power (25-62%) or decreases in alpha/beta power (11-24%), suggesting a sleep-promoting pattern, whereas others were accompanied by increases of higher frequencies (12-27%), suggesting an arousal-related pattern. This study shows that KCs can be generated across widespread cortical areas. Interestingly, the motor cortex shows awake-like EEG activity before the onset of KCs followed by microarousals. Our findings also highlight region-specific sleep- or arousal-promoting responses following KCs, suggesting a dual role for the human KC.


Asunto(s)
Nivel de Alerta/fisiología , Encéfalo/fisiología , Electrocorticografía/métodos , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cuero Cabelludo , Fases del Sueño/fisiología , Vigilia/fisiología , Adulto Joven
11.
Ann Neurol ; 85(4): 485-494, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30786048

RESUMEN

OBJECTIVE: To investigate whether high-frequency oscillations (HFOs) show spatiotemporal propagation and assess the relevance of the earliest oscillations in relation to the seizure onset zone (SOZ) and postsurgical outcome. METHODS: We retrospectively investigated the intracerebral electroencephalography (EEG) of patients who became seizure free after subsequent surgery. We marked HFOs during 1 hour of recordings. We calculated the time delay between pairs of channels as the median delay between their HFOs and constructed a time line of the delay of each channel with respect to the earliest channel (first source channel). A network was defined when a temporal order could be established among the channels based on the existence of statistically significant delays. RESULTS: Fifteen patients with good surgical outcome were included. We found ripple networks in all patients, and fast ripple networks in 9. For ripples, first source channels were found in a higher proportion in the SOZ than the rest of the network channels (15 of 27 [56%] versus 93 of 262 [35%]; p = 0.04). For both ripples and fast ripples, first source channels were resected more often that the rest of the network channels (ripples: 13 of 27 [48%] versus 65 of 262 [25%]; p = 0.01; fast ripples: 8 of 9 [89%] versus 17 of 40 [43%]; p = 0.002); channels with the highest rates of ripples and fast ripples were resected in a similar proportion. INTERPRETATION: These results demonstrate that interictal HFOs are organized in networks and indicate a possible need for the resection of first source channels. However, resecting them is not superior to resecting channels with highest rates of HFOs. Ann Neurol 2019;85:485-494.


Asunto(s)
Electroencefalografía/métodos , Epilepsias Parciales/fisiopatología , Epilepsias Parciales/cirugía , Adolescente , Adulto , Electroencefalografía/tendencias , Epilepsias Parciales/diagnóstico , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
12.
Brain Topogr ; 33(4): 545-557, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32419099

RESUMEN

This project aims to explore if stronger functional connectivity (FC) exists in the maximal BOLD response of EEG/fMRI analysis when it is concordant with seizure-onset-zone (SOZ). Twenty-six patients with drug-resistant focal epilepsy who had an EEG/fMRI and later underwent stereo-EEG implantation were included. Different types of IEDs were labeled in scalp EEG and IED-related maximal BOLD responses were evaluated separately, each constituting one study. After evaluating concordance between maximal BOLD and SOZ, twenty-seven studies were placed in the concordant group and eight in the discordant group. We evaluated the local connectivity and ipsilaterally distant connectivity difference between the maximal BOLD and the contralateral homotopic region. Significantly stronger local FC was found for the maximal BOLD in the concordant group (p < 0.05, Bonferroni corrected). 52% of the studies in the concordant group and 13% in the discordant group had a significant difference compared to healthy subjects (p < 0.05, uncorrected). The finding suggests that, when concordant with the SOZ, the maximal BOLD is more likely to have stronger local FC compared to its contralateral counterpart. This asymmetry in functional connectivity may help to noninvasively improve the specificity of EEG/fMRI analysis.


Asunto(s)
Encéfalo , Epilepsias Parciales , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Electroencefalografía , Epilepsias Parciales/diagnóstico por imagen , Humanos , Convulsiones/diagnóstico por imagen
13.
Neurobiol Dis ; 127: 374-381, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30928645

RESUMEN

OBJECTIVE: The distinction of hypersynchronous (HYP) and low-voltage fast (LVF) onset seizures in mesial temporal lobe epilepsy (MTLE) is well established, but classifying individual seizures and patients is often challenging. Experimental work indicates a strong association of HYP with fast ripples (250-500 Hz) and of LVF with ripples (80-250 Hz). We aimed to investigate whether analysis of high-frequency oscillations can be useful for characterizing the process of seizure generation in human MTLE patients. METHODS: We retrospectively compared 19 HYP and 14 LVF onset clinical seizures from ten and six consecutive MTLE patients with a predominance of the respective pattern. Five-second intervals of stereotactic EEGs from the seizure onset zone were selected, each representing the onset of HYP and LVF, the corresponding pre-ictal periods and, after the large spikes of HYP onsets, the LVF-like pattern that frequently followed. RESULTS: Pre-ictal fast ripple density and rate were higher for HYP than for LVF seizures (p < .05). This association was also found for initial ictal segments (p < .001). Furthermore, fast ripple density and rate were higher during the LVF-like pattern after HYP spikes than during LVF without preceding HYP (p < .01). Ripple density and rate in contrast did not differ significantly (p > .05). Fast ripple (p < .01) and ripple (p < .001) amplitude was higher during the LVF-like pattern after HYP spikes when compared to LVF without preceding HYP. SIGNIFICANCE: Our findings indicate a clear connection between experimental findings and human epilepsy. The association of fast ripples with HYP suggests that out-of-phase firing of different pyramidal cell clusters contributes specifically to generation of these seizures, rather than to LVF onsets. Both during and immediately before seizures, fast ripple analysis may facilitate classification.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Convulsiones/fisiopatología , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
14.
Ann Neurol ; 84(3): 374-385, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30051505

RESUMEN

OBJECTIVE: High-frequency oscillations (HFOs) are a promising biomarker for the epileptogenic zone. It has not been possible, however, to differentiate physiological from pathological HFOs, and baseline rates of HFO occurrence vary substantially across brain regions. This project establishes region-specific normative values for physiological HFOs and high-frequency activity (HFA). METHODS: Intracerebral stereo-encephalographic recordings with channels displaying normal physiological activity from nonlesional tissue were selected from 2 tertiary epilepsy centers. Twenty-minute sections from N2/N3 sleep were selected for automatic detection of ripples (80-250Hz), fast ripples (>250Hz), and HFA defined as long-lasting activity > 80Hz. Normative values are provided for 17 brain regions. RESULTS: A total of 1,171 bipolar channels with normal physiological activity from 71 patients were analyzed. The highest rates of ripples were recorded in the occipital cortex, medial and basal temporal region, transverse temporal gyrus and planum temporale, pre- and postcentral gyri, and medial parietal lobe. The mean rate of fast ripples was very low (0.038/min). Only 5% of channels had a rate > 0.2/min HFA was observed in the medial occipital lobe, pre- and postcentral gyri, transverse temporal gyri and planum temporale, and lateral occipital lobe. INTERPRETATION: This multicenter atlas is the first to provide region-specific normative values for physiological HFO rates and HFA in common stereotactic space; rates above these can now be considered pathological. Physiological ripples are frequent in eloquent cortex. In contrast, physiological fast ripples are very rare, making fast ripples a good candidate for defining the epileptogenic zone. Ann Neurol 2018;84:374-385.


Asunto(s)
Mapeo Encefálico , Ondas Encefálicas/fisiología , Encéfalo/fisiología , Electroencefalografía , Adulto , Biomarcadores , Electrodos , Electroencefalografía/métodos , Femenino , Humanos , Masculino
15.
Brain ; 141(3): 731-743, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29360943

RESUMEN

Simultaneous scalp EEG/functional MRI measures non-invasively haemodynamic responses to interictal epileptic discharges, which are related to the epileptogenic zone. High frequency oscillations are also an excellent indicator of this zone, but are primarily recorded from intracerebral EEG. We studied the spatial overlap of these two important markers in patients with drug-resistant epilepsy to assess if their combination could help better define the extent of the epileptogenic zone. We included patients who underwent EEG-functional MRI and later intracerebral EEG. Based on intracerebral EEG findings, we separated patients with unifocal seizures from patients with multifocal or unknown onset seizures. Haemodynamic t-maps were coregistered with the intracerebral electrode positions. Each EEG channel was classified as pertaining to one of the following categories: primary haemodynamic cluster (maximum t-value), secondary cluster (t-value > 90% of the primary cluster) or outside the primary and secondary clusters. We marked high frequency oscillations (ripples: 80-250 Hz; fast ripples: 250-500 Hz) during 1 h of slow wave sleep, and compared their rates in each haemodynamic category. After classifying channels as high- or low-rate, the proportion of high-rate channels within the primary or primary plus secondary clusters was compared to the proportion expected by chance. Twenty-five patients, 11 with unifocal and 14 with multifocal/unknown seizure onsets, were studied. We found a significantly higher median high frequency oscillation rate in the primary cluster compared to secondary cluster and outside these two clusters for the unifocal group (P < 0.0001), but not for the multifocal/unknown group. For the unifocal group, the number of high-rate channels within the primary or primary plus secondary clusters was significantly higher than expected by chance. This held only for the high-ripple-rate channels in the multifocal/unknown group. At the patient level, most patients (18/25, or 72%) had at least one high-rate channel within a primary cluster. In patients with unifocal epilepsy, the maximum haemodynamic response (primary cluster) related to scalp interictal discharges overlaps with the tissue generating high frequency oscillations at high rates. If intracranial EEG is warranted, this response should be explored. As a tentative clinical use of the combination of these techniques we propose that higher high frequency oscillation rates inside than outside the maximum response indicates that the patient has indeed a focal epileptogenic zone demarcated by this response, whereas similar rates inside and outside may indicate a widespread epileptogenic zone or an epileptogenic zone not covered by the implantation.


Asunto(s)
Ondas Encefálicas/fisiología , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/fisiopatología , Hemodinámica/fisiología , Periodicidad , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Adulto Joven
16.
Brain ; 141(4): 1130-1144, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29506200

RESUMEN

In contrast to scalp EEG, our knowledge of the normal physiological intracranial EEG activity is scarce. This multicentre study provides an atlas of normal intracranial EEG of the human brain during wakefulness. Here we present the results of power spectra analysis during wakefulness. Intracranial electrodes are placed in or on the brain of epilepsy patients when candidates for surgical treatment and non-invasive approaches failed to sufficiently localize the epileptic focus. Electrode contacts are usually in cortical regions showing epileptic activity, but some are placed in normal regions, at distance from the epileptogenic zone or lesion. Intracranial EEG channels defined using strict criteria as very likely to be in healthy brain regions were selected from three tertiary epilepsy centres. All contacts were localized in a common stereotactic space allowing the accumulation and superposition of results from many subjects. Sixty-second artefact-free sections during wakefulness were selected. Power spectra were calculated for 38 brain regions, and compared to a set of channels with no spectral peaks in order to identify significant peaks in the different regions. A total of 1785 channels with normal brain activity from 106 patients were identified. There were on average 2.7 channels per cm3 of cortical grey matter. The number of contacts per brain region averaged 47 (range 6-178). We found significant differences in the spectral density distributions across the different brain lobes, with beta activity in the frontal lobe (20-24 Hz), a clear alpha peak in the occipital lobe (9.25-10.25 Hz), intermediate alpha (8.25-9.25 Hz) and beta (17-20 Hz) frequencies in the parietal lobe, and lower alpha (7.75-8.25 Hz) and delta (0.75-2.25 Hz) peaks in the temporal lobe. Some cortical regions showed a specific electrophysiological signature: peaks present in >60% of channels were found in the precentral gyrus (lateral: peak frequency range, 20-24 Hz; mesial: 24-30 Hz), opercular part of the inferior frontal gyrus (20-24 Hz), cuneus (7.75-8.75 Hz), and hippocampus (0.75-1.25 Hz). Eight per cent of all analysed channels had more than one spectral peak; these channels were mostly recording from sensory and motor regions. Alpha activity was not present throughout the occipital lobe, and some cortical regions showed peaks in delta activity during wakefulness. This is the first atlas of normal intracranial EEG activity; it includes dense coverage of all cortical regions in a common stereotactic space, enabling direct comparisons of EEG across subjects. This atlas provides a normative baseline against which clinical EEGs and experimental results can be compared. It is provided as an open web resource (https://mni-open-ieegatlas. RESEARCH: mcgill.ca).


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiopatología , Electrocorticografía/métodos , Epilepsia/patología , Adulto , Corteza Cerebral/diagnóstico por imagen , Electrodos , Epilepsia/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen , Análisis Espectral , Vigilia , Adulto Joven
17.
Ann Neurol ; 82(1): 57-66, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28586147

RESUMEN

OBJECTIVE: Structural and functional imaging studies in focal epilepsy often reveal distributed regions of abnormality. These are interpreted as representing the existence of epileptic networks, but the presence of actual neuronal interactions between these regions has not been demonstrated. We sought to determine whether the distributed hemodynamic responses often seen in functional magnetic resonance imaging (fMRI) studies of scalp interictal epileptic discharges (IEDs) actually correspond to synchronized neuronal activities when examining the intracerebral electroencephalogram (iEEG) at distant nodes of the network. METHODS: We studied 28 patients who underwent first EEG-fMRI and then iEEG, and had significant hemodynamic responses in the gray matter. We coregistered the hemodynamic responses to the iEEG electrode contact positions and analyzed synchrony, measured by correlation, between IEDs recorded by iEEG in regions with and without hemodynamic responses. RESULTS: The synchrony of intracerebral IED activity between pairs of regions showing a hemodynamic response was higher compared to that between pairs of regions without (p < 0.0001) and between pairs of regions, one with and one without hemodynamic response (p < 0.0001). These differences were found during the interictal periods with IEDs but were absent during the interictal periods without IEDs. Higher synchrony was also observed between regions involved at seizure onset (p < 0.0001). INTERPRETATION: EEG-fMRI studies are unique in their ability to reveal hemodynamic concomitants of IEDs anywhere in the brain. This study proves that iEEG activity is synchronized between these regions of hemodynamic response, thus demonstrating the existence of an actual neuronally based interictal epileptic network. This also validates the EEG-fMRI approach to reveal this network noninvasively. Ann Neurol 2017;82:57-66.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Sincronización de Fase en Electroencefalografía/fisiología , Epilepsia/fisiopatología , Hemodinámica/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Neuroimagen Funcional , Sustancia Gris/irrigación sanguínea , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Magn Reson Med ; 78(1): 370-382, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27487983

RESUMEN

PURPOSE: Recent studies have applied the new magnetic resonance encephalography (MREG) sequence to the study of interictal epileptic discharges (IEDs) in the electroencephalogram (EEG) of epileptic patients. However, there are no criteria to quantitatively evaluate different processing methods, to properly use the new sequence. METHODS: We evaluated different processing steps of this new sequence under the common generalized linear model (GLM) framework by assessing the reliability of results. A bootstrap sampling technique was first used to generate multiple replicated data sets; a GLM with different processing steps was then applied to obtain activation maps, and the reliability of these maps was assessed. RESULTS: We applied our analysis in an event-related GLM related to IEDs. A higher reliability was achieved by using a GLM with head motion confound regressor with 24 components rather than the usual 6, with an autoregressive model of order 5 and with a canonical hemodynamic response function (HRF) rather than variable latency or patient-specific HRFs. Comparison of activation with IED field also favored the canonical HRF, consistent with the reliability analysis. CONCLUSION: The reliability analysis helps to optimize the processing methods for this fast fMRI sequence, in a context in which we do not know the ground truth of activation areas. Magn Reson Med 78:370-382, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Epilepsia ; 58(12): 2153-2163, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28983917

RESUMEN

OBJECTIVE: To increase the diagnostic power of scalp electroencephalography (EEG) by investigating whether lesion type and location influence the morphology of interictal epileptic discharges (IEDs) and the likelihood that IEDs and high-frequency oscillations (HFOs) are present. METHODS: We studied EEG activity in epilepsy patients with lesional epilepsy. Lesions were classified by type and by location (region and depth). We marked a maximum of 50 IEDs during deep non-rapid eye movement sleep. IEDs were identified as spikes or sharp waves with or without slow waves, or bursts of spikes or sharp waves with or without slow waves. We analyzed HFOs in the studies showing at least 50 IEDs. RESULTS: In 192 scalp EEG studies, the differences in the percentage of studies showing IEDs in each depth-related group were not statistically significant, whereas HFOs (55 studies) predominated in patients exhibiting superficial lesions (p<0.001). Sharp waves, as predominant pattern, were more prevalent in hippocampal abnormalities (p < 0.001), whereas bursts predominated in patients with malformations of cortical development (p < 0.001). SIGNIFICANCE: The depth of the lesion does not influence the presence of IEDs, as one might expect, but it influences that of HFOs. This is explained as follows. HFOs are generated in the epileptogenic region, do not propagate, and hence are only visible on scalp EEG with superficial lesions. IEDs can result from a nearby focus or propagate from a deep generator and are therefore equally present with deep, intermediate, and superficial lesions. Additionally, IED morphology provides information in determining the lesion type.


Asunto(s)
Electroencefalografía , Epilepsia/fisiopatología , Cuero Cabelludo , Adolescente , Adulto , Anciano , Corteza Cerebral/anomalías , Corteza Cerebral/fisiopatología , Femenino , Hipocampo/anomalías , Hipocampo/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Sueño , Telemetría , Adulto Joven
20.
Epilepsia ; 58(5): 811-823, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28294306

RESUMEN

OBJECTIVE: Intracranial electroencephalography (EEG), performed presurgically in patients with drug-resistant and difficult-to-localize focal epilepsy, samples only a small fraction of brain tissue and thus requires strong hypotheses regarding the possible localization of the epileptogenic zone. EEG/fMRI (functional magnetic resonance imaging), a noninvasive tool resulting in hemodynamic responses, could contribute to the generation of these hypotheses. This study assessed how these responses, despite their interictal origin, predict the seizure-onset zone (SOZ). METHODS: We retrospectively studied 37 consecutive patients who underwent stereo-EEG (SEEG) and EEG/fMRI that resulted in significant hemodynamic responses. Hemodynamic response maps were co-registered to postimplantation anatomic imaging, allowing inspection of these responses in relation to SEEG electrode's location. The area containing the most significant t-value (primary cluster) explored with an electrode was assessed for concordance with SEEG-defined SOZ. Discriminant analysis was performed to distinguish the primary clusters having a high probability of localizing the SOZ. RESULTS: Thirty-one patients had at least one study with primary cluster explored with an electrode, and 24 (77%) had at least one study with primary cluster concordant with the SOZ. Each patient could have multiple types of interictal discharge and therefore multiple studies. Among 59 studies from the 37 patients, 44 had a primary cluster explored with an electrode and 30 (68%) were concordant with the SOZ. Discriminant analysis showed that the SOZ is predictable with high confidence (>90%) if the primary cluster is highly significant and if the next significant cluster is much less significant or absent. SIGNIFICANCE: The most significant hemodynamic response to interictal discharges delineates the subset of the irritative zone that generates seizures in a high proportion of patients with difficult-to-localize focal epilepsy. EEG/fMRI generates responses that are valuable targets for electrode implantation and may reduce the need for implantation in patients in whom the most significant response satisfies the condition of our discriminant analysis.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/irrigación sanguínea , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/cirugía , Electroencefalografía/métodos , Epilepsias Parciales/fisiopatología , Epilepsias Parciales/cirugía , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Potenciales Evocados/fisiología , Hemodinámica/fisiología , Imagen por Resonancia Magnética/métodos , Técnicas Estereotáxicas , Encéfalo/fisiopatología , Dominancia Cerebral/fisiología , Epilepsia Refractaria/diagnóstico , Imagen Eco-Planar/métodos , Electrodos Implantados , Epilepsias Parciales/diagnóstico , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador , Oxígeno/sangre , Estudios Retrospectivos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA