Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 284: 116893, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173225

RESUMEN

Diatoms and bacteria play a vital role in investigating the ecological effects of heavy metals in the environment. Despite separate studies on metal interactions with diatoms and bacteria, there is a significant gap in research regarding heavy metal interactions within a diatom-bacterium system, which closely mirrors natural conditions. In this study, we aim to address this gap by examining the interaction of uranium(VI) (U(VI)) with Achnanthidium saprophilum freshwater diatoms and their natural bacterial community, primarily consisting of four successfully isolated bacterial strains (Acidovorax facilis, Agrobacterium fabrum, Brevundimonas mediterranea, and Pseudomonas peli) from the diatom culture. Uranium (U) bio-association experiments were performed both on the xenic A. saprophilum culture and on the four bacterial isolates. Scanning electron microscopy and transmission electron microscopy coupled with spectrum imaging analysis based on energy-dispersive X-ray spectroscopy revealed a clear co-localization of U and phosphorus both on the surface and inside A. saprophilum diatoms and the associated bacterial cells. Time-resolved laser-induced fluorescence spectroscopy with parallel factor analysis identified similar U(VI) binding motifs both on A. saprophilum diatoms and the four bacterial isolates. This is the first work providing valuable microscopic and spectroscopic data on U localization and speciation within a diatom-bacterium system, demonstrating the contribution of the co-occurring bacteria to the overall interaction with U, a factor non-negligible for future modeling and assessment of radiological effects on living microorganisms.


Asunto(s)
Diatomeas , Uranio , Uranio/metabolismo , Diatomeas/metabolismo , Microscopía Electrónica de Rastreo , Bacterias/metabolismo , Microscopía Electrónica de Transmisión , Espectrometría por Rayos X , Comamonadaceae/metabolismo , Agrobacterium , Pseudomonas/metabolismo
2.
World J Microbiol Biotechnol ; 38(4): 72, 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35277761

RESUMEN

In order to better understand the bacterial distribution characteristics in a whole microecosystem, the bacterial communities in different components of an artificial aquarium (i.e., plants, fishes, sand and water) were characterized using high throughput sequencing of bacterial 16S rRNA genes. Across all samples, 2873 operational taxonomic units were identified and assigned to 771 genera in 36 phyla. In a principle coordinate analysis, samples clustered according to their origin, indicating that bacterial communities from the same component were most similar. Further taxonomic analysis revealed that most dominant genera, even those with the similar functions, were biased to one component: Nitrospira and Rhodobacter were mainly abundant in plant samples; Rhodococcus, Serratia, Ralstonia, Sphingobacterium and Pseudomonas were most common in sand samples; Cetobacterium and Aeromonas dominated fish samples; and Flavobacterium, Alpinimonas and Limnobacter were especially common in water samples. Functional predictions performed by PICRUSt and the dominant genera exhibited that bacteria detected in each component could participate in all nutrient cycles in the aquarium. However, those involved in carbon and nitrogen cycling were most common in plant and fish samples, while phosphate metabolism-related pathways were more abundant in sand and water samples. Moreover, the aquarium plants, in association with their bacterial communities might be the most important component in the aquarium, as indicated by their highest bacterial richness and diversity. This study adds to our understanding on the differences in the microbiome of different components and their possible contributions to nutrient cycling in a self-sustaining aquarium.


Asunto(s)
Bacterias , Microbiota , Animales , Bacterias/genética , Ciclo del Nitrógeno , Nutrientes , ARN Ribosómico 16S/genética
3.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33158898

RESUMEN

Periodontitis is a highly prevalent oral inflammatory disease triggered by dysbiotic subgingival microbiota. For the development of microbiome modulators that can reverse the dysbiotic state and reestablish a health-associated microbiota, a high-throughput in vitro multispecies biofilm model is needed. Our aim is to establish a model that resembles a dysbiotic subgingival microbial biofilm by incorporating the major periodontal pathogen Porphyromonas gingivalis into microcosm biofilms cultured from pooled saliva of healthy volunteers. The biofilms were grown for 3, 7, and 10 days and analyzed for their microbial composition by 16S rRNA gene amplicon sequencing as well as measurement of dipeptidyl peptidase IV (DPP4) activity and butyric acid production. The addition of P. gingivalis increased its abundance in saliva-derived microcosm biofilms from 2.7% on day 3 to >50% on day 10, which significantly reduced the Shannon diversity but did not affect the total number of operational taxonomic units (OTUs). The P. gingivalis-enriched biofilms displayed altered microbial composition as revealed by principal-component analysis and reduced interactions among microbial species. Moreover, these biofilms exhibited enhanced DPP4 activity and butyric acid production. In conclusion, by adding P. gingivalis to saliva-derived microcosm biofilms, we established an in vitro pathogen-enriched dysbiotic microbiota which resembles periodontitis-associated subgingival microbiota in terms of increased P. gingivalis abundance and higher DPP4 activity and butyric acid production. This model may allow for investigating factors that accelerate or hinder a microbial shift from symbiosis to dysbiosis and for developing microbiome modulation strategies.IMPORTANCE In line with the new paradigm of the etiology of periodontitis, an inflammatory disorder initiated by dysbiotic subgingival microbiota, novel therapeutic strategies have been proposed targeting reversing dysbiosis and restoring host-compatible microbiota rather than eliminating the biofilms unselectively. Thus, appropriate laboratory models are required to evaluate the efficacy of potential microbiome modulators. In the present study, we used the easily obtainable saliva as an inoculum, spiked the microcosm biofilms with the periodontal pathogen Porphyromonas gingivalis, and obtained a P. gingivalis-enriched microbiota, which resembles the in vivo pathogen-enriched subgingival microbiota in severe periodontitis. This biofilm model circumvents the difficulties encountered when using subgingival plaque as the inoculum and achieves microbiota in a dysbiotic state in a controlled and reproducible manner, which is required for high-throughput and large-scale evaluation of strategies that can potentially modulate microbial ecology.


Asunto(s)
Disbiosis/microbiología , Encía/microbiología , Porphyromonas gingivalis/fisiología , Saliva/microbiología , Biopelículas , Ácido Butírico/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Humanos , Microbiota/genética , Microbiota/fisiología , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/genética , ARN Ribosómico 16S/genética
4.
J Appl Microbiol ; 130(3): 948-959, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32866324

RESUMEN

AIMS: To identify the bacteria nodulating Sulla spinosissima growing profusely in a lead and zinc mine tailings in Eastern Morocco. METHODS AND RESULTS: In all, 32 rhizobial cultures, isolated from root nodules of S. spinosissima growing in soils of the mining site, were tolerant to different heavy metals. The ERIC-polymerase chain reaction (PCR) fingerprinting analysis clustered the isolates into seven different groups, and the analysis of the 16S rRNA sequences of four selected representative strains, showed they were related to different species of the genus Mesorhizobium. The atpD, glnII and recA housekeeping genes analysis confirmed the affiliation of the four representative strains to Mesorhizobium camelthorni CCNWXJ40-4T , with similarity percentages varying from 96·30 to 98·30%. The sequences of the nifH gene had 97·33-97·78% similarities with that of M. camelthorni CCNWXJ40-4T ; however, the nodC phylogeny of the four strains diverged from the type and other reference strains of M. camelthorni and formed a separated cluster. The four strains nodulate also Astragalus gombiformis and A. armatus but did not nodulate A. boeticus, Vachellia gummifera, Prosopis chilensis, Cicer arietinum, Lens culinaris, Medicago truncatula, Lupinus luteus or Phaseolus vulgaris. CONCLUSIONS: Based on similarities of the nodC symbiotic gene and differences in the host range, the strains isolated from S. spinosissima growing in soils of the Sidi Boubker mining site may form a different symbiovar within Mesorhizobium for which the name aridi is proposed. SIGNIFICANCE AND IMPACT OF THE STUDY: In this work, we show that strains of M. camelthorni species nodulating S. spinosissima in the arid area of Eastern Morocco constitute a distinct phylogenetic clade of nodulation genes; we named symbiovar aridi, which encompasses also mesorhizobia from other Mediterranean desert legumes.


Asunto(s)
Fabaceae/microbiología , Plomo/metabolismo , Mesorhizobium/fisiología , Minería , Simbiosis , Proteínas Bacterianas/genética , Genes Esenciales/genética , Especificidad del Huésped , Mesorhizobium/clasificación , Marruecos , Filogenia , Nodulación de la Raíz de la Planta/genética , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , Microbiología del Suelo , Simbiosis/genética
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(7): 849-855, 2020 Jul 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-32879089

RESUMEN

The 16S rRNA gene is the most commonly used molecular marker for identifying microorganisms. It is used in sequencing technology, including the first-generation, the second-generation, and the third-generation sequencing technology. A large number of studies on the 16S rRNA gene have contributed to a deeper understanding of oral microbial diversity. In the healthy oral cavity, there is microbial diversity in time and space. With the occurrence or development of oral diseases such as caries, periodontal disease, or halitosis, the microbial diversity will be changed.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Boca , ARN Ribosómico 16S/genética
6.
J Sci Food Agric ; 99(2): 507-516, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30144051

RESUMEN

Organic solid wastes (OSWs) should be regarded as valuable resources rather than dead-end landfill waste that causes public health and odor concerns. Anaerobic digestion (AD) is an ideal approach for managing organic solid waste issues and involves using a group of anaerobic microorganisms to transform OSWs into useful products. In this review, over 100 publications related to AD of OSWs have been compiled, discussed, and analyzed. A comprehensive analysis of the environmental and safety impacts of AD, its key environmental factors, co-digestion, and pretreatment, as well as the AD of OSWs by various anaerobic microbes uncovered by high throughput sequencing-based approaches, is presented. The purpose of this review is to provide an outline of the current knowledge of AD processes from a multi-angle perspective. A comprehensive understanding of AD of OSWs and genome-enabled biology development could be helpful for providing up-to-date knowledge of AD, developing it, overcoming its drawbacks and, ultimately, improving global waste control for more efficient environmental management. © 2018 Society of Chemical Industry.


Asunto(s)
Bacterias/metabolismo , Microbiota , Residuos Sólidos/análisis , Anaerobiosis , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental
7.
Am J Primatol ; 80(4): e22753, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29635791

RESUMEN

The gastrointestinal tract of primates harbors a complex microbial community, playing an essential role in the degradation of otherwise indigestible structural carbohydrates. The phylogenetic and functional diversity of the bacterial community in the feces as a surrogate for the gastrointestinal tract of wild Sichuan snub-nosed monkeys (Rhinopithecus roxellana, N = 6) was characterized based on sequence analysis of 16S rRNA genes. A sex comparison was conducted, with a prior hypothesis that the abundances of the bacterial taxa and/or functional categories associated with energy and nutrient metabolism would be higher in adult females (N = 3) due to the higher reproductive costs compared to adult males (N = 3). Ten phyla were identified in all samples, among which Bacteroidetes and Firmicutes were the predominant. Included in the above two phyla, the members of Prevotellaceae (Prevotella in particular) and Ruminococcaceae were highly abundant, which are common bacteria in the gastrointestinal tract of primates and can degrade various structural carbohydrates such as cellulose, hemicellulose, and pectin. This functionality was in line with the high abundances of the metagenomes associated with carbohydrate metabolism. Consistent with our hypothesis, the abundances of the metagenomes associated with energy metabolism, folding/sorting and degradation, glycan biosynthesis and metabolism, and metabolism of amino acids were higher in adult females relative to adult males. Sex differences were also detected in the bacterial community structure, although no sex differences in the proportions of any bacterial taxa were found likely due to the small sample size. These results suggested that gastrointestinal bacterial communities may aid adult females in increasing energy and nutrition utilization efficiencies compared to adult males. Fecal bacterial communities were found to be more similar between individuals in adult females than in adult males. Our study presented the first examination of the fecal bacterial diversity of a little-studied, endangered foregut fermenter.


Asunto(s)
Bacterias/clasificación , Colobinae/microbiología , Heces/microbiología , Animales , Bacterias/genética , China , Femenino , Microbioma Gastrointestinal , Masculino , Filogenia , ARN Ribosómico 16S , Factores Sexuales
8.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28432098

RESUMEN

Coumarins are widely found in plants as natural constituents having antimicrobial activity. When considering plants that are rich in coumarins for biogas production, adverse effects on microorganisms driving the anaerobic digestion process are expected. Furthermore, coumarin derivatives, like warfarin, which are used as anticoagulating medicines, are found in wastewater, affecting its treatment. Coumarin, the structure common to all coumarins, inhibits the anaerobic digestion process. However, the details of this inhibition are still elusive. Here, we studied the impact of coumarin on acetogenesis and methanogenesis. First, coumarin was applied at four concentrations between 0.25 and 1 g · liter-1 to pure cultures of the methanogens Methanosarcina barkeri and Methanospirillum hungatei, which resulted in up to 25% less methane production. Acetate production of syntrophic propionate- and butyrate-degrading cultures of Syntrophobacter fumaroxidans and Syntrophomonas wolfei was inhibited by 72% at a coumarin concentration of 1 g · liter-1 Coumarin also inhibited acetogenesis and acetoclastic methanogenesis in a complex biogas reactor microbiome. When a coumarin-adapted microbiome was used, acetogenesis and methanogenesis were not inhibited. According to amplicon sequencing of bacterial 16S rRNA genes and mcrA genes, the communities of the two microbiomes were similar, although Methanoculleus was more abundant and Methanobacterium less abundant in the coumarin-adapted than in the nonadapted microbiome. Our results suggest that well-dosed feeding with coumarin-rich feedstocks to full-scale biogas reactors while keeping the coumarin concentrations below 0.5 g · liter-1 will allow adaptation to coumarins by structural and functional community reorganization and coumarin degradation.IMPORTANCE Coumarins from natural and anthropogenic sources have an inhibitory impact on the anaerobic digestion process. Here, we studied in detail the adverse effects of the model compound coumarin on acetogenesis and methanogenesis, which are two important steps of the anaerobic digestion process. Coumarin concentrations lower than 0.5 g · liter-1 had only a minor impact. Even though similar inhibitory effects can be assumed for coumarin derivatives, little effects on the anaerobic treatment of wastewater are expected where concentrations of coumarin derivatives are lower than 0.5 g · liter-1 However, when full-scale reactors are fed with coumarin-rich feedstocks, the biogas processes might be inhibited. Hence, these feedstocks should be utilized in a well-dosed manner or after adaptation of the microbial community.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/metabolismo , Biocombustibles/análisis , Cumarinas/farmacología , Ácidos Grasos/metabolismo , Metano/metabolismo , Microbiota/efectos de los fármacos , Acetatos/metabolismo , Bacterias/clasificación , Bacterias/genética , Reactores Biológicos/microbiología , Oxidación-Reducción/efectos de los fármacos
9.
Appl Microbiol Biotechnol ; 101(11): 4815-4825, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28235988

RESUMEN

On-farm biopurification systems (BPSs) represent an efficient technology for treating pesticide-contaminated wastewater. Biodegradation by genetically adapted bacteria has been suggested to perform a major contribution to the removal of pesticides in BPSs. Recently, several studies pointed to the role of IncP-1 plasmids in the degradation of pesticides in BPSs but this was never linked with catabolic markers. Therefore, a microcosm experiment was conducted in order to examine whether changes in mobile genetic element (MGE) abundances in response to the application of phenylurea herbicide linuron are linked with changes in catabolic genes. Denaturing gradient gel electrophoresis (DGGE) fingerprints of 16S ribosomal RNA gene fragments amplified from total community (TC)-DNA suggested significant shifts in the bacterial community composition. PCR-Southern blot-based detection of genes involved in linuron hydrolysis (libA and hylA) or degradation of its metabolite 3,4-dichloroaniline (dcaQ I , dcaQ II , and ccdC) in TC-DNA showed that the abundance of the hylA gene was increased faster and stronger in response to linuron application than that of the libA gene, and that the dcaQ II gene was more abundant than the isofunctional gene dcaQ I 20 and 60 days after linuron addition. Furthermore, a significant increase in the relative abundance of the IncP-1-specific korB gene in response to linuron was recorded. Our data suggest that different bacterial populations bearing isofunctional genes coding for enzymes degrading linuron seemed to be enriched in BPSs in response to linuron and that IncP-1 plasmids might be involved in their dissemination.


Asunto(s)
Linurona/metabolismo , Consorcios Microbianos/genética , Plaguicidas/metabolismo , Microbiología del Suelo , Agricultura , Biodegradación Ambiental , Comamonadaceae/efectos de los fármacos , Comamonadaceae/genética , ADN Bacteriano , Electroforesis en Gel de Gradiente Desnaturalizante , Hidrólisis , Secuencias Repetitivas Esparcidas , Linurona/farmacología , Consorcios Microbianos/efectos de los fármacos , Plásmidos , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S , Aguas Residuales
10.
Appl Microbiol Biotechnol ; 100(1): 447-60, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26394861

RESUMEN

Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage 2 bulking. The chitinolytic activity of Chitinophaga is likely antagonistic towards Auxenochlorella and may have contributed to stage 3 stable granule formation. Rhodanobacter, known to support complete denitrification, were predominant in stage 1 and stage 3 granules. The relative abundance of Rhodanobacter coincided with high protein concentrations in EPS, suggesting a role in microbial aggregation and granule formation.


Asunto(s)
Bacterias/crecimiento & desarrollo , Reactores Biológicos/microbiología , Chlorophyta/crecimiento & desarrollo , Consorcios Microbianos , Aguas del Alcantarillado/microbiología , Aerobiosis , Bacterias/clasificación , Bacterias/genética , Chlorophyta/clasificación , Chlorophyta/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Polímeros/aislamiento & purificación , Polisacáridos/análisis , Proteínas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Factores de Tiempo , Purificación del Agua
11.
Mol Ecol ; 24(3): 656-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25533191

RESUMEN

Intestinal tracts are among the most densely populated microbial ecosystems. Gut microbiota and their influence on the host have been well characterized in terrestrial vertebrates but much less so in fish. This is especially true for coral reef fishes, which are among the most abundant groups of vertebrates on earth. Surgeonfishes (family: Acanthuridae) are part of a large and diverse family of reef fish that display a wide range of feeding behaviours, which in turn has a strong impact on the reef ecology. Here, we studied the composition of the gut microbiota of nine surgeonfish and three nonsurgeonfish species from the Red Sea. High-throughput pyrosequencing results showed that members of the phylum Firmicutes, especially of the genus Epulopiscium, were dominant in the gut microbiota of seven surgeonfishes. Even so, there were large inter- and intraspecies differences in the diversity of surgeonfish microbiota. Replicates of the same host species shared only a small number of operational taxonomic units (OTUs), although these accounted for most of the sequences. There was a statistically significant correlation between the phylogeny of the host and their gut microbiota, but the two were not completely congruent. Notably, the gut microbiota of three nonsurgeonfish species clustered with some surgeonfish species. The microbiota of the macro- and microalgavores was distinct, while the microbiota of the others (carnivores, omnivores and detritivores) seemed to be transient and dynamic. Despite some anomalies, both host phylogeny and diet were important drivers for the intestinal microbial community structure of surgeonfishes from the Red Sea.


Asunto(s)
Dieta , Intestinos/microbiología , Microbiota , Perciformes/microbiología , Animales , Teorema de Bayes , Arrecifes de Coral , ADN Bacteriano/genética , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Océano Índico , Funciones de Verosimilitud , Datos de Secuencia Molecular , Perciformes/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Mol Ecol Resour ; 24(1): e13871, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37772760

RESUMEN

Although most cyanobacteria use visible light (VL; λ = 400-700 nm) for photosynthesis, some have evolved strategies to use far-red light (FRL; λ = 700-800 nm). These cyanobacteria are defined as far-red light-utilizing cyanobacteria (FRLCyano), including two groups: (1) chlorophyll d-producing Acaryochloris spp. and (2) polyphyletic cyanobacteria that produce chlorophylls d and f in response to FRL. Numerous ecological studies examine pigments, such as chlorophylls d and f, to investigate the presence of FRLCyano in the environment. This method is not ideal because it can only detect FRLCyano that have made chlorophylls d or f. Here we develop a new method, far-red cyanobacteria identification (FRCI), to identify FRLCyano based on 16S rRNA gene sequences. From public databases and published articles, 62 16S rRNA gene sequences of FRLCyano were extracted. Comparing with related lineages, we determined that 97% sequence identity is the optimal cut-off for distinguishing FRLCyano from other cyanobacteria. To test the method experimentally, we collected samples from 17 sites in Taipei, Taiwan, and conducted VL and FRL enrichments. Our results demonstrate that FRCI can detect FRLCyano during FRL enrichments more sensitively than pigment analysis. FRCI can also resolve the composition of FRLCyano at the genus level, which pigment analysis cannot do. In addition, we applied FRCI to published datasets and discovered putative FRLCyano in diverse environments, including soils, hot springs and deserts. Overall, our results indicate that FRCI is a sensitive and high-resolution method using 16S rRNA gene sequences to identify FRLCyano.


Asunto(s)
Cianobacterias , Luz Roja , ARN Ribosómico 16S/genética , Genes de ARNr , Fotosíntesis/genética , Cianobacterias/genética
13.
Discov Med ; 36(181): 424-436, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409847

RESUMEN

BACKGROUND: Non-obese diabetic (NOD) mice develop type 1 diabetes (T1D) spontaneously and serve as a good model for investigating the underlying pathological mechanisms and devising novel treatment procedures. Although acid water consumption has been reported to exaggerate or reduce diabetes incidence in female NOD mice by two groups, the causative bacteria responsible for these contrasting changes remain unclear. On the contrary, we and others failed to observe the effect of acid water consumption on diabetes incidence. This study aimed to determine whether the consumption of low-pH drinking water could alter the frequencies of prominent bacterial groups independent of diabetes manifestation. METHODS: Six-week-old female NOD mice maintained on acidified drinking water at the Jackson Laboratories were transferred to neutral pH water or continuously provided with low pH drinking water at our facility. Diabetes was monitored weekly using a glucometer. Using the 454-pyrosequencing methodology, we profiled the gut microbiome of mice transferred to neutral water and developed diabetes. Further, we performed quantitative real-time polymerase chain reactions (qRT-PCR) using primers specific for prominent 16S rRNA genes on the fecal DNA of mice provided with low pH or neutral water and displayed diabetes similarly. RESULTS: Consistent with our earlier report, the incidence of T1D was robust (80-100%) regardless of whether female NOD mice consumed acid (~pH 2.9) or neutral water. The 454-pyrosequencing of fecal DNA indicated no substantial influence of transferring mice to neutral pH drinking water on the gut microbiome. To validate these findings, we conducted qRT-PCR on the fecal DNA of mice longitudinally from six weeks of age to adulthood that consumed acidic or neutral pH water and developed diabetes similarly. Among the 15 selected bacterial groups examined, the frequency of Lactobacillus sp. remained consistently lower (p < 0.05) throughout the life of NOD mice compared to that found in young (6-week-old) mice, regardless of the pH of the drinking water. The relative frequencies of the Firmicutes Ruminococcaceae and the Bactereoidetes members Anaerophaga sp. and Paludibacter sp. increased significantly (p < 0.05) during the transition to the overtly diabetic stage irrespective of the ionic strength of the drinking water. Interestingly, the Firmicutes members Clostridium coccoides, C. leptum, and Lachnospiraceae and the Bacteroidetes members Bacteroides sp. and Prevottella sp. remained unchanged throughout the analysis irrespective of the pH of the drinking water. Paradoxically, the representations of Akkermansia muciniphila and the segmented filamentous bacteria implicated in diabetes protection did not differ regardless of the age or the ionic strength of the drinking water. CONCLUSIONS: The data presented herein validate the lack of influence of acidic drinking water on T1D development in female NOD mice. Diabetes was associated with the lower representation of Lactobacillus sp. throughout life, which was not influenced by the differing pH of the drinking water. Significantly, segmented filamentous bacteria and A. muciniphila, previously implicated in protection against T1D, were not perturbed by the varying pH of the water consumed. These data indicate that although acidified water consumption was reported previously to diminish specific gastrointestinal pathogens, it failed to perturb gut commensals that influence diabetes development.


Asunto(s)
Diabetes Mellitus Tipo 1 , Agua Potable , Microbioma Gastrointestinal , Femenino , Animales , Ratones , Ratones Endogámicos NOD , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/patología , ARN Ribosómico 16S/genética , Bacterias/genética , ADN
14.
Anaerobe ; 24: 12-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23994204

RESUMEN

The objective of this study was to evaluate the changes in bacterial populations in the rumen of dairy cattle following adaptation to subacute ruminal acidosis (SARA) using 16S rRNA gene pyrosequencing. Rumen contents were collected from four cattle adapted to either a 40% (control diet, COD) or 70% (SARA induction diet, SAID) concentrate feeds. DNA was extracted from each of the samples. Bacterial 16S rRNA genes of ruminal DNA extracts were PCR amplified with 2 bar coded primer sets and sequenced by 454 pyrosequencing. At a high taxonomic level, the percentage of Proteobacteria and Bacteroidetes were reduced by SAID feeding, whereas Firmicutes and Actinobacteria were more abundant in the SAID than in the COD group. At the genus level, as compared with the COD group, the abundances of Prevotella, Treponema, Anaeroplasma, Papillibacter, Acinetobacter and unclassified populations including unclassified Lentisphaerae, and unclassified bacteria were lower (P < 0.05), while the percentages of Ruminococcus, Atopobium, unclassified Clostridiales and Bifidobacterium were increased (P < 0.05) in the SAID group. Feeding of SAID reduced (P < 0.001) the diversity of the rumen microbial community. Taken together, our findings provide a comprehensive picture of current knowledge of the community structure of the rumen bacterial ecosystem during SARA, and enhance our understanding about the ruminal microbial ecology that may be useful in the prevention of ruminal acidosis.


Asunto(s)
Acidosis , Biota/efectos de los fármacos , Rumen/microbiología , Animales , Bovinos , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
mSystems ; 8(4): e0035723, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37534938

RESUMEN

The cervicovaginal microbiota is influenced by host physiology, immunology, lifestyle, and ethnicity. We hypothesized that there would be differences in the cervicovaginal microbiota among pregnant, nonpregnant, and menopausal women living in Puerto Rico (PR) with and without human papillomavirus (HPV) infection and cervical cancer. We specifically wanted to determine if the microbiota is associated with variations in cervical cytology. A total of 294 women, including reproductive-age nonpregnant (N = 196), pregnant (N = 37), and menopausal (N = 61) women, were enrolled. The cervicovaginal bacteria were characterized by 16S rRNA amplicon sequencing, the HPV was genotyped with SPF10-LiPA, and cervical cytology was quantified. High-risk HPV (HR-HPV, 67.3%) was prevalent, including genotypes not covered by the 9vt HPV vaccine. Cervical lesions (34%) were also common. The cervical microbiota was dominated by Lactobacillus iners. Pregnant women in the second and third trimesters exhibited a decrease in diversity and abundance of microbes associated with bacterial vaginosis. Women in menopause had greater alpha diversity, a greater proportion of facultative and strictly anaerobic bacteria, and higher cervicovaginal pH than premenopausal women. Cervical lesions were associated with greater alpha diversity. However, no significant associations between the microbiota and HPV infection (HR or LR-HPV types) were found. The cervicovaginal microbiota of women living in Puerto Rican were either dominated by L. iners or diverse microbial communities regardless of a woman's physiological stage. We postulate that the microbiota and the high prevalence of HR-HPV increase the risk of cervical lesions among women living in PR. IMPORTANCE In the enclosed manuscript, we provide the first in-depth characterization of the cervicovaginal microbiota of Hispanic women living in Puerto Rico (PR), using a 16S rRNA approach, and include women of different physiological stages. Surprisingly we found that high-risk HPV was ubiquitous with a prevalence of 67.3%, including types not covered by the 9vt HPV vaccine. We also found highly diverse microbial communities across women groups-with a reduction in pregnant women, but dominated by nonoptimal Lactobacillus iners. Additionally, we found vaginosis-associated bacteria as Dialister spp., Gardnerella spp., Clostridium, or Prevotella among most women. We believe this is a relevant and timely article expanding knowledge on the cervicovaginal microbiome of PR women, where we postulate that these highly diverse communities are conducive to cervical disease.


Asunto(s)
Cuello del Útero , Microbiota , Infecciones por Papillomavirus , Femenino , Humanos , Embarazo , Bacterias/genética , Hispánicos o Latinos , Microbiota/genética , Infecciones por Papillomavirus/epidemiología , Puerto Rico/epidemiología , ARN Ribosómico 16S/genética , Cuello del Útero/microbiología
16.
Environ Pollut ; 318: 120866, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36529341

RESUMEN

The impact of coal mining activities on the structure of groundwater microbial communities in coal mining areas has gradually received academic attention. In this study, hydrochemical analysis and sequencing of the V4 region of the 16S rRNA gene were carried out using groundwater samples from the fourth aquifer in the loose layer of Cenozoic, the sandstone fissure aquifer in the coal measure strata of Permian, the Carboniferous Taiyuan Formation limestone aquifer, and the Ordovician limestone aquifer, at depths of 250 m, 600 m, 750 m, and 1000 m in monitoring wells. Results showed that the operational taxonomy units (OTUs) in the deep groundwater ecosystem were clustered distinguishably between the contaminated and the uncontaminated aquifers. The microbial community alpha-diversity of groundwater was significantly correlated with depth, and the richness of microbial community composition decreased with increasing depth. Proteobacteria (34.41%-97.41%), was found to be the dominant phylum, Gammaproteobacteria (10.05%-92.06%) was the dominant class and "Unassigned" (4.12%-64.72%) was dominant at the genus level. The number of endemic bacteria in the four aquifers was 1, 33, 99 and 11, respectively. It was also found that F-, oxidation-reduction potential (ORP), and TOC were the main environmental variables affecting the groundwater all OTUs, abundant OTUs, and rare OTUs, respectively. These results indicate that the activity of rare OTU subcommunities increases gradually with increasing aquifer depth and that mining significantly enriched Thiovirga in deep groundwater. In addition, it was found that with the increase of depth, the effect of ORP on microbial community abundance decreased. This study deepens our understanding of the evolution characteristics of microbial communities in deep groundwater in coal mining areas. The unique characteristics of microbial communities characteristics of four aquifers with different depths provide a microbial perspective for understanding the characteristics of deep aquifers.


Asunto(s)
Minas de Carbón , Gammaproteobacteria , Agua Subterránea , Microbiota , ARN Ribosómico 16S/genética , Agua Subterránea/química , Carbonato de Calcio
17.
Pharmaceutics ; 15(3)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36986850

RESUMEN

We demonstrate that Blautia coccoides JCM1395T has the potential to be used for tumor-targeted live bacterial therapeutics. Prior to studying its in vivo biodistribution, a sample preparation method for reliable quantitative analysis of bacteria in biological tissues was required. Gram-positive bacteria have a thick outer layer of peptidoglycans, which hindered the extraction of 16S rRNA genes for colony PCR. We developed the following method to solve the issue; the method we developed is as follows. The homogenates of the isolated tissue were seeded on agar medium, and bacteria were isolated as colonies. Each colony was heat-treated, crushed with glass beads, and further treated with restriction enzymes to cleave DNAs for colony PCR. With this method, Blautia coccoides JCM1395T and Bacteroides vulgatus JCM5826T were individually detected from tumors in mice intravenously receiving their mixture. Since this method is very simple and reproducible, and does not involve any genetic modification, it can be applied to exploring a wide range of bacterial species. We especially demonstrate that Blautia coccoides JCM1395T efficiently proliferate in tumors when intravenously injected into tumor-bearing mice. Furthermore, these bacteria showed minimal innate immunological responses, i.e., elevated serum tumor necrosis factor α and interleukin-6, similar to Bifidobacterium sp., which was previously studied as a therapeutic agent with a small immunostimulating effect.

18.
Microorganisms ; 11(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37894089

RESUMEN

Managing soil biodiversity using reduced tillage is a popular approach, yet soil bacteriobiomes in the agroecosystems of Siberia has been scarcely studied, especially as they are related to tillage. We studied bacteriobiomes in Chernozem under natural steppe vegetation and cropped for wheat using conventional or no tillage in a long-term field trial in the Novosibirsk region, Russia, by using the sequence diversity of the V3/V4 region of 16S rRNA genes. Actinobacteria, Acidobacteria, and Proteobacteria summarily accounted for 80% of the total number of sequences, with Actinobacteria alone averaging 51%. The vegetation (natural vs. crop) and tillage (ploughed vs. no-till) affected the bacterial relative abundance at all taxonomic levels and many taxa, e.g., hundreds of OTUs. However, such changes did not translate into α-biodiversity changes, i.e., observed and potential OTUs' richness, Shannon, and Simpson, excepting the slightly higher evenness and equitability in the top 0-5 cm of the undisturbed soil. As for the ß-biodiversity, substituting conventional ploughing with no tillage and maintaining the latter for 12 years notably shifted the soil bacteriobiome closer to the one in the undisturbed soil. This study, presenting the first inventory of soil bacteriobiomes under different tillage in the south of West Siberia, underscores the need to investigate the seasonality and longevity aspects of tillage, especially as they are related to crop production.

19.
Sci Total Environ ; 866: 161358, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36603627

RESUMEN

Mitigating the loss and negative impacts of reactive N from fertilized soils remains a global environmental challenge. To optimize N retention by biochar, bamboo and pig manure biochars were modified as MgO- and sepiolite-biochar composites and characterized. Novel soil application of the modified biochars and their raw forms were comparatively evaluated for N-retention in a fertilized soil leached for 90 days in a column experiment. Changes in N-cycling-related enzyme and bacterial structure were also reported after 90 days. Results revealed low leaching losses of NH4+, which reduced over time across all the treatments. However, while sole fertilizer (F) increased the initial and cumulative NO3- leached from the soil, the MgO-bamboo biochar (MgOBF) and sepiolite-bamboo biochar (SBF) treatments reduced leachate NO3- by 22.1 % and 10.5 % compared to raw bamboo biochar (BBF) treatment. However, 15.5 % more NO3- was leached from the MgO-pig manure biochar-treated soil (MgOPF) compared to its raw biochar treatment (PMBF) after 90 days. Dissolved organic N leached was reduced by 9.2 % and 0.5 % in MgOBF and SBF, as well as 15.4 % and 40.5 % in MgOPF and SPF compared to their respective raw forms. The total N of the biochars, adjustment of surface charges, cation exchange capacity, surface area, pore filling effects, and the formation of potential MgN precipitates on the modified-biochar surfaces regulated N leaching/retention. In addition, the modified biochar treatments reduced the hydrolysis of urea and stimulated some nitrate-reduction-related bacteria crucial for NO3- retention. Hence, unlike the raw biochar and MgOPF treatments, MgOBF, SBF, and SPF hold promise in mitigating inorganic-N losses from fertilized soils while improving the soil's chemical properties.


Asunto(s)
Carbón Orgánico , Sasa , Animales , Porcinos , Carbón Orgánico/química , Óxido de Magnesio , Nitrógeno/análisis , Estiércol , Suelo/química
20.
Microb Genom ; 8(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36190827

RESUMEN

Campylobacteriosis is still the most commonly reported zoonosis in the European Union causing gastrointestinal disease in humans. One of the most common sources for these food-borne infections is broiler meat. Interactions between Campylobacter (C.) jejuni and the intestinal microbiota might influence Campylobacter colonization in chickens. The aim of the present study was to gain further knowledge about exclusive interactions of the host microbiota with C. jejuni in Campylobacter-specific phage-free chickens under standardized conditions and special biosafety precautions.Therefore, 12 artificially infected (C. jejuni inoculum with a challenge dose of 7.64 log10 c.f.u.) and 12 control chickens of the breed Ross 308 were kept under special biosafety measures in an animal facility. At day 42 of life, microbiota studies were performed on samples of caecal digesta and mucus. No Campylobacter-specific phages were detected by real-time PCR analysis of caecal digesta of control or artificially infected chickens. Amplification of the 16S rRNA gene was performed within the hypervariable region V4 and subsequently sequenced with Illumina MiSeq platform. R (version 4.0.2) was used to compare the microbiota between C. jejuni-negative and C. jejuni-positive chickens. The factor chickens' infection status contributed significantly to the differences in microbial composition of mucosal samples, explaining 10.6 % of the microbiota variation (P=0.007) and in digesta samples, explaining 9.69 % of the microbiota variation (P=0.015). The strongest difference between C. jejuni-non-infected and C. jejuni-infected birds was observed for the family Peptococcaceae whose presence in C. jejuni-infected birds could not be demonstrated. Further, several genera of the family Ruminococcaceae appeared to be depressed in its abundance due to Campylobacter infection. A negative correlation was found between Christensenellaceae R-7 group and Campylobacter in C. jejuni-colonised chickens, both genera potentially competing for substrate. This makes Christensenellaceae R-7 group highly interesting for further studies that aim to find control options for Campylobacter infections and assess the relevance of this finding for chicken health and Campylobacter colonization.


Asunto(s)
Bacteriófagos , Infecciones por Campylobacter , Campylobacter jejuni , Campylobacter , Microbiota , Enfermedades de las Aves de Corral , Animales , Bacteriófagos/genética , Campylobacter/genética , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/genética , Pollos , Humanos , Membrana Mucosa , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA