Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nanotechnology ; 35(32)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38684144

RESUMEN

Semiconductor nanowires (NWs) are promising candidates for use in electronic and optoelectronic applications, offering numerous advantages over their thin film counterparts. Their performance relies heavily on the quality of the contacts to the NW, which should exhibit ohmic behavior with low resistance and should be formed in a reproducible manner. In the case of heterostructure NWs for high-mobility applications that host a two-dimensional electron gas, ohmic contacts are particularly challenging to implement since the NW core constituting the conduction channel is away from the NW surface. We investigated contact formation to modulation-doped GaAs/(Al,Ga)As core/shell NWs using scanning transmission electron microscopy, energy dispersive x-ray spectroscopy and electron tomography to correlate microstructure, diffusion profile and chemical composition of the NW contact region with the current-voltage (I-V) characteristics of the contacted NWs. Our results illustrate how diffusion, alloying and phase formation processes essential to the effective formation of ohmic contacts are more intricate than in planar layers, leading to reproducibility challenges even when the processing conditions are the same. We demonstrate that the NW geometry plays a crucial role in the creation of good contacts. Both ohmic and rectifying contacts were obtained under nominally identical processing conditions. Furthermore, the presence of Ge in the NW core, in the absence of Au and Ni, was found as the key factor leading to ohmic contacts. The analysis contributes to the current understanding of ohmic contact formation to heterostructure core/shell NWs offering pathways to enhance the reproducibility and further optimization of such NW contacts.

2.
Small ; 19(28): e2300520, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37191281

RESUMEN

Nanotechnology has delivered an amazing range of new materials such as nanowires, tubes, ribbons, belts, cages, flowers, and sheets. However, these are usually circular, cylindrical, or hexagonal in nature, while nanostructures with square geometries are comparatively rare. Here, a highly scalable method is reported for producing vertically aligned Sb-doped SnO2 nanotubes with perfectly-square geometries on Au nanoparticle covered m-plane sapphire using mist chemical vapor deposition. Their inclination can be varied using r- and a-plane sapphire, while unaligned square nanotubes of the same high structural quality can be grown on silicon and quartz. X-ray diffraction measurements and transmission electron microscopy show that they adopt the rutile structure growing in the [001] direction with (110) sidewalls, while synchrotron X-ray photoelectron spectroscopy reveals the presence of an unusually strong and thermally resilient 2D surface electron gas. This is created by donor-like states produced by the hydroxylation of the surface and is sustained at temperatures above 400 °C by the formation of in-plane oxygen vacancies. This persistent high surface electron density is expected to prove useful in gas sensing and catalytic applications of these remarkable structures. To illustrate their device potential, square SnO2 nanotube Schottky diodes and field effect transistors with excellent performance characteristics are fabricated.

3.
Nano Lett ; 19(11): 7588-7597, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31398289

RESUMEN

Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the -3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging.

4.
Nano Lett ; 19(3): 1605-1612, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30715894

RESUMEN

With the help of the two-dimensional electron gas (2DEG) at the LaAlO3-SrTiO3 interface, spin and charge currents can be interconverted. However, the conversion efficiency has been strongly depressed by LaAlO3, which blocks spin transmission. It is therefore highly desired to explore 2DEGs sandwiched between ferromagnetic insulators that are transparent for magnons. By constructing epitaxial heterostructure with ferromagnetic EuO, which is conducting for spin current but insulating for electric current, and KTaO3, we successfully obtained the 2DEGs, which can receive thermally injected spin current directly from EuO and convert the spin current to charge current via inverse Edelstein effect of the interface. Strong dependence of the spin Seebeck coefficient on the layer thickness of EuO is further observed and the propagation length for non-equilibrium magnons in EuO has been determined. The present work demonstrates the great potential of the 2DEGs formed by ferromagnetic oxides for spin caloritronics.

5.
Nano Lett ; 19(6): 3770-3776, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31088057

RESUMEN

In typical thermoelectric energy harvesters and sensors, the Seebeck effect is caused by diffusion of electrons or holes in a temperature gradient. However, the Seebeck effect can also have a phonon drag component, due to momentum exchange between charge carriers and lattice phonons, which is more difficult to quantify. Here, we present the first study of phonon drag in the AlGaN/GaN two-dimensional electron gas (2DEG). We find that phonon drag does not contribute significantly to the thermoelectric behavior of devices with ∼100 nm GaN thickness, which suppresses the phonon mean free path. However, when the thickness is increased to ∼1.2 µm, up to 32% (88%) of the Seebeck coefficient at 300 K (50 K) can be attributed to the drag component. In turn, the phonon drag enables state-of-the-art thermoelectric power factor in the thicker GaN film, up to ∼40 mW m-1 K-2 at 50 K. By measuring the thermal conductivity of these AlGaN/GaN films, we show that the magnitude of the phonon drag can increase even when the thermal conductivity decreases. Decoupling of thermal conductivity and Seebeck coefficient could enable important advancements in thermoelectric power conversion with devices based on 2DEGs.

6.
Sensors (Basel) ; 19(23)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783594

RESUMEN

This paper introduces a strategy for improving the sensitivity of a gas sensor to NO2 gas. The gas sensor was fabricated using urchin-like ZnO nanostructures grown on MgO particles via vapor-phase growth and decorated with MgZnO nanoparticles via a sol-gel process. The urchin-like ZnO gas sensor decorated with MgZnO showed higher sensitivity to NO2 gas than a pristine urchin-like ZnO gas sensor. When ZnO and MgZnO form a heterojunction, a two-dimensional electron gas is generated. This improves the performance of the fabricated gas sensor. The growth morphology, atomic composition, and phase structure were confirmed through field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction, respectively.

7.
Nano Lett ; 17(9): 5620-5625, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28806520

RESUMEN

Here, we demonstrate the nanoscale manipulations of two types of charge transfer to the LaAlO3/SrTiO3 interfaces: one from surface adsorbates and another from oxygen vacancies inside LaAlO3 films. This method can be used to produce multiple insulating and metallic interface states with distinct carrier properties that are highly stable in air. By reconfiguring the patterning and comparing interface structures formed from different doping sources, effects of extrinsic and intrinsic material characters on the transport properties can be distinguished. In particular, a multisubband to single-subband transition controlled by the structural phases in SrTiO3 was revealed. In addition, the transient behaviors of nanostructures also provided a unique opportunity to study the nanoscale diffusions of adsorbates and oxygen vacancies in oxide heterostructures. Knowledge of such dynamic processes is important for nanodevice implementations.

8.
Nano Lett ; 17(12): 7339-7344, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29111764

RESUMEN

The unique electronic band structure of indium nitride InN, part of the industrially significant III-N class of semiconductors, offers charge transport properties with great application potential due to its robust n-type conductivity. Here, we explore the water sensing mechanism of InN thin films. Using angle-resolved photoemission spectroscopy, core level spectroscopy, and theory, we derive the charge carrier density and electrical potential of a two-dimensional electron gas, 2DEG, at the InN surface and monitor its electronic properties upon in situ modulation of adsorbed water. An electric dipole layer formed by water molecules raises the surface potential and accumulates charge in the 2DEG, enhancing surface conductivity. Our intuitive model provides a novel route toward understanding the water sensing mechanism in InN and, more generally, for understanding sensing material systems beyond InN.

9.
J Nanosci Nanotechnol ; 17(1): 577-80, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29630184

RESUMEN

We investigated the correlation between the crystal quality and two-dimensional electron gas (2DEG) mobility of an AlGaN/GaN high-electron-mobility transistor (HEMT) structure grown by metal-organic chemical vapor deposition. For the structure with an AlN nucleation layer grown at 1100 °C, the 2DEG mobility and sheet carrier density were 1627 cm²/V·s and 3.23 × 10¹³ cm⁻², respectively, at room temperature. Further, it was confirmed that the edge dislocation density of the GaN buffer layer was related to the 2DEG mobility and sheet carrier density in the AlGaN/GaN HEMT.

10.
Nano Lett ; 16(4): 2739-43, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26928809

RESUMEN

We report an oxygen surface adsorbates induced metal-insulator transition at the LaAlO3/SrTiO3 interfaces. The observed effects were attributed to the terminations of surface Al sites and the resultant electron-accepting surface states. By controlling the local oxygen adsorptions, we successfully demonstrated the nondestructive patterning of the interface two-dimensional electron gas (2DEG). The obtained 2DEG structures are stable in air and also robust against general solvent treatments. This study provides new insights into the metal-insulator transition mechanism at the complex oxide interfaces and also a highly efficient technique for tailoring the interface properties.

11.
Nano Lett ; 15(7): 4381-6, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26046294

RESUMEN

Quantum oscillations are observed in the 2DEG system at the interface of novel heterostructures, PbTe/CdTe (111), with nearly identical lattice parameters (a(PbTe) = 0.6462 nm, a(CdTe) = 0.648 nm) but very different lattice structures (PbTe: rock salt, CdTe: zinc blende). The 2DEG formation mechanism, a mismatch in the bonding configurations of the valence electrons at the interface, is uniquely different from the other known 2DEG systems. The aberration-corrected scanning transmission electron microscope (AC-STEM) characterization indicates an abrupt interface without cation interdiffusion due to a large miscibility gap between the two constituent materials. Electronic transport measurements under magnetic field up to 60 T, with the observation of Landau level filling factor ν = 1, unambiguously reveal a π Berry phase, suggesting the Dirac Fermion nature of the 2DEG at the heterostructure interface, and the PbTe/CdTe heterostructure being a new candidate for 2D topological crystalline insulators.

12.
Nanomaterials (Basel) ; 14(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057887

RESUMEN

AlGaN/GaN high-electron-mobility transistors (HEMTs) are widely used in high-frequency and high-power applications owing to the high two-dimensional electron gas (2DEG) concentration. However, the microscopic origin of the 2DEG remains unclear. This hinders the development of device fabrication technologies, such as threshold voltage modulation, current collapse suppression, and 2DEG concentration enhancement technologies, as well as AlGaN/GaN sensors with very high sensitivity to polar liquids. To clarify the 2DEG microscopic origin, we studied the effects of gas molecules on AlGaN/GaN surfaces through various experiments and first-principles calculations. The results indicated that the adsorption of gas molecules on the AlGaN/GaN surface is an important phenomenon, clarifying the microscopic origin of the 2DEG. This study elucidates the properties of AlGaN/GaN heterojunctions and promotes the development of new fabrication technologies for AlGaN/GaN devices.

13.
ACS Appl Mater Interfaces ; 16(20): 26915-26921, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717847

RESUMEN

Multifunctional integration in a single device has always been a hot research topic, especially for contradictory phenomena, one of which is the coexistence of ferroelectricity and metallicity. The complex oxide heterostructures, as symmetric breaking systems, provide a great possibility to incorporate different properties. Moreover, finding a series of oxide heterostructures to achieve this goal remains as a challenge. Here, taking the advantage of different physical phenomena, we use H2 plasma to pretreat the SrTiO3 (STO) substrate and then fabricate HfO2/STO heterostructures with it. The novel, well-repeatable metallic two-dimensional electron gas (2DEG) is directly obtained at the heterointerfaces without any further complex procedures, while the obvious ferroelectric-like behavior and Rashba spin-orbit coupling are also observed. The understanding of the mechanism, as well as the modified facile preparation procedure, would be meaningful for further development of ferroelectric metal in complex oxide heterostructures.

14.
ACS Nano ; 18(12): 9221-9231, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38488287

RESUMEN

We investigate the direction-dependent switching current in a flux-tunable four-terminal Josephson junction defined in an InAs/Al two-dimensional heterostructure. The device exhibits the Josephson diode effect with switching currents that depend on the sign of the bias current. The superconducting diode efficiency, reaching a maximum of |η| ≈ 34%, is widely tunable─both in amplitude and sign─as a function of magnetic fluxes and gate voltages. Our observations are supported by a circuit model of three parallel Josephson junctions with nonsinusoidal current-phase relation. With respect to conventional Josephson interferometers, phase-tunable multiterminal Josephson junctions enable large diode efficiencies in structurally symmetric devices, where local magnetic fluxes generated on the chip break both time-reversal and spatial symmetries. Our work presents an approach for developing Josephson diodes with wide-range tunability that do not rely on exotic materials.

15.
J Phys Condens Matter ; 36(14)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38128134

RESUMEN

Two-dimensional electron gases (2DEGs) realized at perovskite oxide interfaces offer great promise for high charge carrier concentrations and low-loss charge transport. BaSnO3(BSO) and SrSnO3(SSO) are well-known wide bandgap semiconductors for their high mobility due to the Sn-5s-dominated conduction band minimum (CBM). Ta4+with a 5d1valence configuration in SrTaO3(STaO) injects thed1electron across the interface into the unoccupied Sn-5sstates in BSO and SSO. The present study uses ACBN0 density functional theory computations to explore charge transfer and 2DEG formation at BSO/STaO and SSO/STaO interfaces. The results of the ACBN0 computations confirm the Ta-5dto Sn-5scharge transfer. Moreover, the Sn-5s-dominated CBM is located ∼1.4 eV below the Fermi level, corresponding to an excess electron density in BSO of ∼1.5 × 1021cm-3, a ∼50% increase in electron density compared to the previously studied BSO/SrNbO3(SNO) interface. Similarly, the SSO/STaO interface shows an improvement in interface electron density by ∼20% compared to the BSO/SNO interface. The improved carrier density in SSO/STaO and BSO/STaO is further supported by ∼13% and ∼15% increase in electrical conductivities compared to BSO/SNO. In summary, BSO/STaO and SSO/STaO interfaces provide novel material platforms for 2DEGs formation and ultra-low-loss electron transport.

16.
Materials (Basel) ; 16(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37895654

RESUMEN

The main advantage of using ferroelectric materials as a component of complex heterostructures is the ability to tune various properties of the whole system by means of an external electric field. In particular, the electric field may change the polarization direction within the ferroelectric material and consequently affect the structural properties, which in turn affects the electronic and magnetic properties of the neighboring material. In addition, ferroelectrics allow the electrostriction phenomenon to proceed, which is promising and can be used to affect the magnetic states of the interface state in the heterostructure through a magnetic component. The interfacial phenomena are of great interest, as they provide extended functionality useful for next-generation electronic devices. Following the idea of utilizing ferroelectrics in heterostructural components in the present works, we consider 2DEG, the Rashba effect, the effect of magnetoelectric coupling, and magnetostriction in order to emphasize the advantages of such heterostructures as components of devices. For this purpose, model systems of LaMnO3/BaTiO3, La2CuO4/BaTiO3, Bi/BaTiO3, and Bi/PbTiO3, Fe/BaTiO3 heterostructures are investigated using density functional theory calculations.

17.
Nanomaterials (Basel) ; 13(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38063750

RESUMEN

Two-dimensional electron gas (2DEG) at the (100) KTaO3(KTO) surface and interfaces has attracted extensive interest because of its abundant physical properties. Here, light illumination-induced semiconductor-metal transition in the 2DEG at the KTO surface was investigated. 2DEG was formed at the surface of KTO by argon ion bombardment. The 2DEG prepared with a shorter bombardment time (300 s) exhibits semiconducting behavior in the range of 20~300 K in the dark. However, it shows a different resistance behavior, namely, a metallic state above ~55 K and a semiconducting state below ~55 K when exposed to visible light (405 nm) with a giant conductivity increase of about eight orders of magnitude at 20 K. The suppression of the semiconducting behavior is found to be more pronounced with increasing light power. After removing the illumination, the resistance cannot recover quickly, exhibiting persistent photoconductivity. More interestingly, the photoresponse of the 2DEG below 50 K was almost independent of the laser wavelength, although the photon energy is lower than the band gap of KTO. The present results provide experimental support for tuning oxide 2DEG by photoexcitation, suggesting promising applications of KTO-based 2DEG in future electronic and optoelectronic devices.

18.
ACS Appl Mater Interfaces ; 15(30): 36866-36876, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486017

RESUMEN

A low-temperature Al2O3 deposition process provides a simplified method to form a conductive two-dimensional electron gas (2DEG) at the metal oxide/Al2O3 heterointerface. However, the impact of key factors of the interface defects and cation interdiffusion on the interface is still not well understood. Furthermore, there is still a blank space in terms of applications that go beyond the understanding of the interface's electrical conductivity. In this work, we carried out a systematic experimental study by oxygen plasma pretreatment and thermal annealing post-treatment to study the impact of interface defects and cation interdiffusion at the In2O3/Al2O3 interface on the electrical conductance, respectively. Combining the trends in electrical conductance with the structural characteristics, we found that building a sharp interface with a high concentration of interface defects provides a reliable approach to producing such a conductive interface. After applying this conductive interface as electrodes for fabricating a field-effect transistor (FET) device, we found that this interface electrode exhibited ultrastability in phosphate-buffered saline (PBS), a commonly used biological saline solution. This study provides new insights into the formation of conductive 2DEGs at metal oxide/Al2O3 interfaces and lays the foundation for further applications as electrodes in bioelectronic devices.

19.
J Phys Condens Matter ; 35(22)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36913734

RESUMEN

We discretize the Schrödinger equation in the approximation of the effective mass for the two-dimensional electron gas of GaAs, without magnetic field and on the other hand, with magnetic field. This discretization leads naturally to Tight Binding (TB) Hamiltonians in the approximation of the effective mass. An analysis of this discretization allows us to gain insight into the role of site and hopping energies, which allows us to model the TB Hamiltonian assembly with spin: Zeeman and spin-orbit coupling effects, especially the case Rashba. With this tool we can assemble Hamiltonians of quantum boxes, Aharanov-Bohm interferometers, anti-dots lattices and effects of imperfections, as well as disorder in the system. The extension to mount quantum billiards is natural. We also explain here how to adapt the recursive equations of Green's functions for the case of spin modes, apart from transverse modes, for the calculation of conductance in these mesoscopic systems. The assembled Hamiltonians allow to identify the matrix elements (depending on the different parameters of the system) associated with splitting or spin flipping, which gives a starting point to model specific systems of interest, manipulating certain parameters. In general, the approach of this work allows us to clearly see the relationship between the wave and matrix description of quantum mechanics. We discuss here also, the extension of the method for 1D and 3D systems, for the extension apart from the first neighbors and for the inclusion of other types of interaction. The way we approach the method, has the objective of showing how specifically the site and hopping energies change in the presence of new interactions. This is very important in the case of spin interactions, because by looking at the matrix elements (site or hopping) we can directly identify the conditions that can lead to splitting, flipping or a mixture of these effects. Which is essential for the design of devices based on spintronics. Finally, we discuss spin-conductance modulation (Rashba spin precession) for the states of an open quantum dot (resonant states). Unlike the case of a quantum wire, the spin-flipping observed in the conductance is not perfectly sinusoidal, there is an envelope that modulates the sinusoidal component, which depends on the discrete-continuous coupling of the resonant states.

20.
J Phys Condens Matter ; 36(1)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37738991

RESUMEN

Spin polarization of two-dimensional electron gas (2DEG) at the interface of EuTiO3/SrTiO3(STO) heterostructures has been theoretical predicted and experimentally observed via x-ray magnetic circular dichroism and polarized x-ray absorption spectroscopy, which, however, is lack of magnetotransport evidence. Here, we report the fabrication of high-quality EuTiO3/STO heterostructures by depositing antiferromagnetic insulating EuTiO3thin films onto STO substrates. Shubnikov-de Haas oscillation, Hall, and magnetoresistance (MR) measurements show that the interface is not only highly conducting, with electron mobility up to5.5×103cm2V-1s-1at 1.8 K, but also shows low-field hysteretic MR effects. MR of ∼9% is observed at 1.8 K and 20 Oe, which is one order of magnitude higher than those observed in other spin-polarized 2DEG oxide systems. Moreover, the heterostructures show ferromagnetic hysteresis loops. These results demonstrate that the high-mobility 2DEG is spin polarized, whose origin is attributed to the interfacial Ti3+-3dstates due to oxygen deficiency and the exchange interactions between interfacial Eu spins and itinerant Ti-3delectrons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA