RESUMEN
PURPOSE: To develop a generalized rigid body motion correction method in 3D radial brain MRI to deal with continuous motion pattern through projection moment analysis. METHODS: An assumption was made that the multichannel coil moves with the head, which was achieved by using a flexible head coil. A two-step motion correction scheme was proposed to directly extract the motion parameters from the acquired k-space data using the analysis of center-of-mass with high noise robustness, which were used for retrospective motion correction. A recursive least-squares model was introduced to recursively estimate the motion parameters for every single spoke, which used the smoothness of motion and resulted in high temporal resolution and low computational cost. Five volunteers were scanned at 3 T using a 3D radial multidimensional golden-means trajectory with instructed motion patterns. The performance was tested through both simulation and in vivo experiments. Quantitative image quality metrics were calculated for comparison. RESULTS: The proposed method showed good accuracy and precision in both translation and rotation estimation. A better result was achieved using the proposed two-step correction compared to traditional one-step correction without significantly increasing computation time. Retrospective correction showed substantial improvements in image quality among all scans, even for stationary scans. CONCLUSIONS: The proposed method provides an easy, robust, and time-efficient tool for motion correction in brain MRI, which may benefit clinical diagnosis of uncooperative patients as well as scientific MRI researches.
Asunto(s)
Algoritmos , Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Movimiento (Física) , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Simulación por Computador , Estudios Retrospectivos , Reproducibilidad de los Resultados , Adulto , Aumento de la Imagen/métodosRESUMEN
PURPOSE: Cardiac magnetic resonance is the gold standard for evaluating left-ventricular ejection fraction (LVEF). Standard protocols, however, can be inefficient, facing challenges due to significant operator and patient involvement. Although the free-running framework (FRF) addresses these challenges, the potential of the extensive data it collects remains underutilized. Therefore, we propose to leverage the large amount of data collected by incorporating interbin cardiac motion compensation into FRF (FRF-MC) to improve both image quality and LVEF measurement accuracy, while reducing the sensitivity to user-defined regularization parameters. METHODS: FRF-MC consists of several steps: data acquisition, self-gating signal extraction, deformation field estimations, and motion-resolved reconstruction with interbin cardiac motion compensation. FRF-MC was compared with the original 5D-FRF method using LVEF and several image-quality metrics. The cardiac regularization weight ( λ c $$ {\lambda}_c $$ ) was optimized for both methods by maximizing image quality without compromising LVEF measurement accuracy. Evaluations were performed in numerical simulations and in 9 healthy participants. In vivo images were assessed by blinded expert reviewers and compared with reference standard 2D-cine images. RESULTS: Both in silico and in vivo results revealed that FRF-MC outperformed FRF in terms of image quality and LVEF accuracy. FRF-MC reduced temporal blurring, preserving detailed anatomy even at higher cardiac regularization weights, and led to more accurate LVEF measurements. Optimized λ c $$ {\lambda}_c $$ produced accurate LVEF for both methods compared with the 2D-cine reference (FRF-MC: 0.59% [-7.2%, 6.0%], p = 0.47; FRF: 0.86% [-8.5%, 6.7%], p = 0.36), but FRF-MC resulted in superior image quality (FRF-MC: 2.89 ± 0.58, FRF: 2.11 ± 0.47; p < 10-3). CONCLUSION: Incorporating interbin cardiac motion compensation significantly improved image quality, supported higher cardiac regularization weights without compromising LVEF measurement accuracy, and reduced sensitivity to user-defined regularization parameters.
RESUMEN
BACKGROUND: Cardiovascular MRI (CMR) faces challenges due to the interference of bright fat signals in visualizing structures like coronary arteries. Effective fat suppression is crucial, especially when using whole-heart CMR techniques. Conventional methods often fall short due to rapid fat signal recovery, leading to residual fat content hindering visualization. Water-selective off-resonant radiofrequency (RF) pulses have been proposed but come with tradeoffs between pulse duration, which increases scan time, and increased RF energy deposit, which limits their applicability due to specific absorption rate (SAR) constraints. The study introduces a lipid-insensitive binomial off-resonant (LIBOR) RF pulse, which addresses concerns about SAR and scan time, and aims to provide a comprehensive quantitative comparison with published off-resonant RF pulses for CMR at 3T. METHODS: A short (1ms) LIBOR pulse, with reduced RF power requirements, was developed and implemented in a free-breathing respiratory-self-navigated 3D radial whole-heart CMR sequence at 3T. A binomial off-resonant rectangular (BORR) pulse with matched duration, as well as previously published lipid-insensitive binomial off-resonant excitation (LIBRE) pulses (1ms and 2.2ms), were implemented and optimized for fat suppression in numerical simulations and validated in volunteers (n=3). Whole-heart CMR was performed in volunteers(n=10) with all four pulses. The signal-to-noise ratio (SNR) of ventricular blood, skeletal muscle, myocardium, and subcutaneous fat and the coronary vessel detection rates and sharpness were compared. RESULTS: Experimental results validated numerical findings and near homogeneous fat suppression was achieved with all four pulses. Comparing the short RF pulses (1ms), LIBOR reduced the RF power nearly two-fold compared with LIBRE, and three-fold compared with BORR, and LIBOR significantly decreased overall fat SNR from cardiac scans, compared to LIBRE and BORR. The reduction in RF pulse duration (from 2.2ms to 1ms) shortened the whole-heart acquisition from 8.5min to 7min. No significant differences in coronary arteries detection and sharpness were found when comparing all four pulses. CONCLUSION: LIBOR pulses enabled whole-heart CMR under 7minutes at 3T, with large volume fat signal suppression, while reducing RF power compared with LIBRE and BORR pulses. LIBOR is an excellent candidate to address SAR problems encountered in CMR sequences where fat suppression remains challenging and short RF pulses are required. AVAILABILITY OF DATA AND MATERIALS: An online repository containing the anonymized human MRI raw data, as well as RF pulse shapes used in this study is publicly available at: https://zenodo.org/records/8338079(PART 1: KNEE V1-V3, HEART V1-V5) https://zenodo.org/records/10715769 (PART 2: HEART V6-V10) Matlab code to 1) simulate the different RF pulses within a GRE sequence and 2) to read and display the anonymized raw data is available from: https://github.com/QIS-MRI/LIBOR_LIBRE_BORR_SimulationCode The compiled research sequence can be requested through the Teamplay platform of Siemens Healthineers.
RESUMEN
PURPOSE: To extend and optimize a non-contrast MRI technique to obtain whole head 4D (time-resolved 3D) qualitative angiographic and perfusion images from a single scan. METHODS: 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) uses pseudocontinuous labeling with a 3D golden ratio ("koosh ball") readout to continuously image the blood water as it travels through the arterial system and exchanges into the tissue. High spatial/temporal resolution angiograms and low spatial/temporal resolution perfusion images can be flexibly reconstructed from the same raw k-space data. Constant and variable flip angle (CFA and VFA, respectively) excitation schedules were optimized through simulations and tested in healthy volunteers. A conventional sensitivity encoding (SENSE) reconstruction was compared against a locally low rank (LLR) reconstruction, which leverages spatiotemporal correlations. Comparison was also made with time-matched time-of-flight angiography and multi-delay EPI perfusion images. Differences in image quality were assessed through split-scan repeatability. RESULTS: The optimized VFA schedule (2-9°) resulted in a significant (p < 0.001) improvement in image quality (up to 84% vs. CFA), particularly for the lower SNR perfusion images. The LLR reconstruction provided effective denoising without biasing the signal timecourses, significantly improving angiographic and perfusion image quality and repeatability (up to 143%, p < 0.001). 4D CAPRIA performed well compared with time-of-flight angiography and had better perfusion signal repeatability than the EPI-based approach (p < 0.001). CONCLUSION: 4D CAPRIA optimized using a VFA schedule and LLR reconstruction can yield high quality whole head 4D angiograms and perfusion images from a single scan.
Asunto(s)
Imagenología Tridimensional , Angiografía por Resonancia Magnética , Humanos , Angiografía por Resonancia Magnética/métodos , Marcadores de Spin , Imagenología Tridimensional/métodos , Angiografía Cerebral/métodos , PerfusiónRESUMEN
PURPOSE: To validate a respiratory motion correction method called focused navigation (fNAV) for free-running radial whole-heart 4D flow MRI. METHODS: Using fNAV, respiratory signals derived from radial readouts are converted into three orthogonal displacements, which are then used to correct respiratory motion in 4D flow datasets. Hundred 4D flow acquisitions were simulated with non-rigid respiratory motion and used for validation. The difference between generated and fNAV displacement coefficients was calculated. Vessel area and flow measurements from 4D flow reconstructions with (fNAV) and without (uncorrected) motion correction were compared to the motion-free ground-truth. In 25 patients, the same measurements were compared between fNAV 4D flow, 2D flow, navigator-gated Cartesian 4D flow, and uncorrected 4D flow datasets. RESULTS: For simulated data, the average difference between generated and fNAV displacement coefficients was 0.04 ± $$ \pm $$ 0.32 mm and 0.31 ± $$ \pm $$ 0.35 mm in the x and y directions, respectively. In the z direction, this difference was region-dependent (0.02 ± $$ \pm $$ 0.51 mm up to 5.85 ± $$ \pm $$ 3.41 mm). For all measurements (vessel area, net volume, and peak flow), the average difference from ground truth was higher for uncorrected 4D flow datasets (0.32 ± $$ \pm $$ 0.11 cm2 , 11.1 ± $$ \pm $$ 3.5 mL, and 22.3 ± $$ \pm $$ 6.0 mL/s) than for fNAV 4D flow datasets (0.10 ± $$ \pm $$ 0.03 cm2 , 2.6 ± $$ \pm $$ 0.7 mL, and 5.1 ± 0 $$ \pm 0 $$ .9 mL/s, p < 0.05). In vivo, average vessel area measurements were 4.92 ± $$ \pm $$ 2.95 cm2 , 5.06 ± $$ \pm $$ 2.64 cm2 , 4.87 ± $$ \pm $$ 2.57 cm2 , 4.87 ± $$ \pm $$ 2.69 cm2 , for 2D flow and fNAV, navigator-gated and uncorrected 4D flow datasets, respectively. In the ascending aorta, all 4D flow datasets except for the fNAV reconstruction had significantly different vessel area measurements from 2D flow. Overall, 2D flow datasets demonstrated the strongest correlation to fNAV 4D flow for both net volume (r2 = 0.92) and peak flow (r2 = 0.94), followed by navigator-gated 4D flow (r2 = 0.83 and r2 = 0.86, respectively), and uncorrected 4D flow (r2 = 0.69 and r2 = 0.86, respectively). CONCLUSION: fNAV corrected respiratory motion in vitro and in vivo, resulting in fNAV 4D flow measurements that are comparable to those derived from 2D flow and navigator-gated Cartesian 4D flow datasets, with improvements over those from uncorrected 4D flow.
Asunto(s)
Imagen por Resonancia Magnética , Frecuencia Respiratoria , Humanos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Aorta , Imagenología Tridimensional/métodosRESUMEN
PURPOSE: To develop a free-running 3D radial whole-heart multiecho gradient echo (ME-GRE) framework for cardiac- and respiratory-motion-resolved fat fraction (FF) quantification. METHODS: (NTE = 8) readouts optimized for water-fat separation and quantification were integrated within a continuous non-electrocardiogram-triggered free-breathing 3D radial GRE acquisition. Motion resolution was achieved with pilot tone (PT) navigation, and the extracted cardiac and respiratory signals were compared to those obtained with self-gating (SG). After extra-dimensional golden-angle radial sparse parallel-based image reconstruction, FF, R2 *, and B0 maps, as well as fat and water images were generated with a maximum-likelihood fitting algorithm. The framework was tested in a fat-water phantom and in 10 healthy volunteers at 1.5 T using NTE = 4 and NTE = 8 echoes. The separated images and maps were compared with a standard free-breathing electrocardiogram (ECG)-triggered acquisition. RESULTS: The method was validated in vivo, and physiological motion was resolved over all collected echoes. Across volunteers, PT provided respiratory and cardiac signals in agreement (r = 0.91 and r = 0.72) with SG of the first echo, and a higher correlation to the ECG (0.1% of missed triggers for PT vs. 5.9% for SG). The framework enabled pericardial fat imaging and quantification throughout the cardiac cycle, revealing a decrease in FF at end-systole by 11.4% ± 3.1% across volunteers (p < 0.0001). Motion-resolved end-diastolic 3D FF maps showed good correlation with ECG-triggered measurements (FF bias of -1.06%). A significant difference in free-running FF measured with NTE = 4 and NTE = 8 was found (p < 0.0001 in sub-cutaneous fat and p < 0.01 in pericardial fat). CONCLUSION: Free-running fat fraction mapping was validated at 1.5 T, enabling ME-GRE-based fat quantification with NTE = 8 echoes in 6:15 min.
Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Corazón/diagnóstico por imagen , Electrocardiografía , Procesamiento de Imagen Asistido por Computador/métodos , Respiración , Imagenología Tridimensional/métodosRESUMEN
PURPOSE: To introduce non-rigid cardiac motion correction into a novel free-running framework for the simultaneous acquisition of 3D whole-heart myocardial T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ maps and cine images, enabling a â¼ $$ \sim $$ 3-min scan. METHODS: Data were acquired using a free-running 3D golden-angle radial readout interleaved with inversion recovery and T 2 $$ {T}_2 $$ -preparation pulses. After correction for translational respiratory motion, non-rigid cardiac-motion-corrected reconstruction with dictionary-based low-rank compression and patch-based regularization enabled 3D whole-heart T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ mapping at any given cardiac phase as well as whole-heart cardiac cine imaging. The framework was validated and compared with established methods in 11 healthy subjects. RESULTS: Good quality 3D T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ maps and cine images were reconstructed for all subjects. Septal T 1 $$ {T}_1 $$ values using the proposed approach ( 1200 ± 50 $$ 1200\pm 50 $$ ms) were higher than those from a 2D MOLLI sequence ( 1063 ± 33 $$ 1063\pm 33 $$ ms), which is known to underestimate T 1 $$ {T}_1 $$ , while T 2 $$ {T}_2 $$ values from the proposed approach ( 51 ± 4 $$ 51\pm 4 $$ ms) were in good agreement with those from a 2D GraSE sequence ( 51 ± 2 $$ 51\pm 2 $$ ms). CONCLUSION: The proposed technique provides 3D T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ maps and cine images with isotropic spatial resolution in a single â¼ $$ \sim $$ 3.3-min scan.
Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Cinemagnética , Humanos , Imagen por Resonancia Cinemagnética/métodos , Imagenología Tridimensional/métodos , Corazón/diagnóstico por imagen , Miocardio , Movimiento (Física) , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética , Fantasmas de ImagenRESUMEN
PURPOSE: To demonstrate a novel 3D radial echo planar imaging (3D REPI) sequence for flexible, rapid, and motion-robust sampling in fMRI. METHODS: The 3D REPI method expands on the recently described golden angle rotated EPI trajectory using radial batched internal navigator echoes (TURBINE) approach by exploiting the unused perpendicular direction in the EPI readout to form fast analogues of rotated stack of stars or spirals trajectories that cover all 3 dimensions of k-space. An iterative conjugate gradient algorithm with SENSE reconstruction and time-segmented non-uniform fast Fourier transform (FFT) was used for parallel imaging acceleration and to account for the effects of B0 inhomogeneity. The golden angle rotation allowed for sliding window reconstruction schemes to be applied in brain BOLD fMRI experiments. RESULTS: Combined whole brain visual and motor fMRI experiments were successfully carried out on a clinical 3T scanner at 2 mm isotropic and 1 × 1 × 2 mm3 resolutions using the 3D REPI design. Improved sampling characteristics and image quality were observed for twisted trajectories at the expense of prolonged readout times and off-resonance effects. The ability to correct for rigid motion correction was also demonstrated. CONCLUSIONS: 3D REPI presents a flexible approach for segmented volumetric fMRI with motion correction and high in-plane spatial resolutions. Improved BOLD fMRI brain activation maps were obtained using a sliding window reconstruction.
Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Algoritmos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Imagenología Tridimensional , Imagen por Resonancia MagnéticaRESUMEN
PURPOSE: Whole-heart MRA techniques typically target predetermined motion states, address cardiac and respiratory dynamics independently, and require either complex planning or computationally demanding reconstructions. In contrast, we developed a fast data-driven reconstruction algorithm with minimal physiological assumptions and compatibility with ungated free-running sequences. THEORY AND METHODS: We propose a similarity-driven multi-dimensional binning algorithm (SIMBA) that clusters continuously acquired k-space data to find a motion-consistent subset for whole-heart MRA reconstruction. Free-running 3D radial data sets from 12 non-contrast-enhanced scans of healthy volunteers and six ferumoxytol-enhanced scans of pediatric cardiac patients were reconstructed with non-motion-suppressed regridding of all the acquired data ("All Data"), with SIMBA, and with a previously published free-running framework (FRF) that uses cardiac and respiratory self-gating and compressed sensing. Images were compared for blood-myocardium sharpness and contrast ratio, visibility of coronary artery ostia, and right coronary artery sharpness. RESULTS: Both the 20-second SIMBA reconstruction and FRF provided significantly higher blood-myocardium sharpness than All Data in both patients and volunteers (P < .05). The SIMBA reconstruction provided significantly sharper blood-myocardium interfaces than FRF in volunteers (P < .001) and higher blood-myocardium contrast ratio than All Data and FRF, both in volunteers and patients (P < .05). Significantly more ostia could be visualized with both SIMBA (31 of 36) and FRF (34 of 36) than with All Data (4 of 36) (P < .001). Inferior right coronary artery sharpness using SIMBA versus FRF was observed (volunteers: SIMBA 36.1 ± 8.1%, FRF 40.4 ± 8.9%; patients: SIMBA 35.9 ± 7.7%, FRF 40.3 ± 6.1%, P = not significant). CONCLUSION: The SIMBA technique enabled a fast, data-driven reconstruction of free-running whole-heart MRA with image quality superior to All Data and similar to the more time-consuming FRF reconstruction.
Asunto(s)
Imagenología Tridimensional , Angiografía por Resonancia Magnética , Algoritmos , Niño , Vasos Coronarios/diagnóstico por imagen , Humanos , Movimiento (Física)RESUMEN
PURPOSE: To test and implement a motion-robust and respiratory-resolved 3D Radial Flow framework that addresses the need for rapid, high resolution imaging in neonatal patients with congenital heart disease. METHODS: A 4-point velocity encoding and 3D radial trajectory with double-golden angle ordering was combined with bulk motion correction (from projection center of mass) and respiration phase detection (from principal component analysis of heartbeat-averaged data) to create motion-robust 3D velocity cardiac time-averaged data. This framework was tested in a whole-chest digital phantom with simulated bulk and realistic physiological motion. In vivo imaging was performed in 20 congenital heart disease infants under feed-and-sleep with submillimeter isotropic resolution in ~3 min. Flows were validated against clinical 2D PCMRI and whole-heart visualizations of blood flow were performed. RESULTS: The proposed framework resolved all simulated digital phantom motion states (mean ± standard error: rotation - azimuthal = 0.29 ± 0.02°; translation - Ty = 1.29 ± 0.12 mm, Tz = -0.27 ± 0.13 mm; rotation+translation - polar = 0.49 ± 0.16°, Tx = -2.47 ± 0.51 mm, Tz = 5.78 ± 1.33 mm). Measured timing errors of peak expiration across all signal-to-noise ratio values were 22% of the true respiratory period (range = [404-489 ± 298-334] ms). For in vivo imaging, motion correction improved 3D Radial Flow measurements (no correction: R2 = 0.62, root mean square error = 0.80 L/min/m2 , Bland-Altman bias [limits of agreement] = -0.21 [-1.40, 0.94] L/min/m2 ; motion corrected, expiration: R2 = 0.90, root mean square error = 0.46 L/min/m2 , bias [limits of agreement] = 0.06 [-0.49, 0.62] L/min/m2 ). Respiratory-resolved 3D velocity visualizations were achieved in various neonatal pathologies pre- and postsurgical correction. CONCLUSION: 3D cardiac flow may be visualized and accurately quantified in neonatal subjects using the proposed framework. This technique may enable more comprehensive hemodynamic studies in small infants.
Asunto(s)
Cardiopatías Congénitas/diagnóstico por imagen , Imagenología Tridimensional , Imagen por Resonancia Magnética , Movimiento (Física) , Neonatología , Algoritmos , Artefactos , Velocidad del Flujo Sanguíneo , Técnicas de Imagen Sincronizada Cardíacas , Femenino , Hemodinámica , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Lactante , Recién Nacido , Masculino , Modelos Teóricos , Fantasmas de Imagen , Reproducibilidad de los Resultados , RespiraciónRESUMEN
PURPOSE: To implement, optimize, and test fast interrupted steady-state (FISS) for natively fat-suppressed free-running 5D whole-heart MRI at 1.5 tesla (T) and 3T. METHODS: FISS was implemented for fully self-gated free-running cardiac- and respiratory-motion-resolved radial imaging of the heart at 1.5T and 3T. Numerical simulations and phantom scans were performed to compare fat suppression characteristics and to determine parameter ranges (number of readouts [NR] per FISS module and TR) for effective fat suppression. Subsequently, free-running FISS data were collected in 10 healthy volunteers and images were reconstructed with compressed sensing. All acquisitions were compared with a continuous balanced steady-state free precession version of the same sequence, and both fat suppression and scan times were analyzed. RESULTS: Simulations demonstrate a variable width and location of suppression bands in FISS that were dependent on TR and NR. For a fat suppression bandwidth of 100 Hz and NR ≤ 8, simulations demonstrated that a TR between 2.2 ms and 3.0 ms is required at 1.5T, whereas a range of 3.0 ms to 3.5 ms applies at 3T. Fat signal increases with NR. These findings were corroborated in phantom experiments. In volunteers, fat SNR was significantly decreased using FISS compared with balanced steady-state free precession (P < 0.05) at both field strengths. After protocol optimization, high-resolution (1.1 mm3 ) 5D whole-heart free-running FISS can be performed with effective fat suppression in under 8 min at 1.5T and 3T at a modest scan time increase compared to balanced steady-state free precession. CONCLUSION: An optimal FISS parameter range was determined enabling natively fat-suppressed 5D whole-heart free-running MRI with a single continuous scan at 1.5T and 3T, demonstrating potential for cardiac imaging and noncontrast angiography.
Asunto(s)
Radicales Libres , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Técnicas de Imagen Sincronizada Respiratorias , Algoritmos , Simulación por Computador , Angiografía Coronaria , Electrocardiografía , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Movimiento (Física) , Distribución Normal , Fantasmas de Imagen , Relación Señal-RuidoRESUMEN
BACKGROUND: Conventional T2 *-weighted functional magnetic resonance imaging (fMRI) is performed with echo-planar imaging (EPI) sequences that create substantial acoustic noise. The loud acoustic noise not only affects the activation of the auditory cortex, but may also interfere with resting state and task fMRI experiments. PURPOSE: To demonstrate the feasibility of a novel, quiet, T2 *, whole-brain blood oxygenation level-dependent (BOLD)-fMRI method, termed Looping Star, compared to conventional multislice gradient-echo EPI. STUDY TYPE: Prospective. PHANTOM/SUBJECTS: Glover stability QA phantom; 10 healthy volunteers. FIELD STRENGTH/SEQUENCE: 3.0T: gradient echo (GE)-EPI and T2 * Looping Star fMRI. ASSESSMENT: Looping Star fMRI was presented and compared to GE-EPI with a working memory (WM) task and resting state (RS) experiments. Temporal stability and acoustic measurements were obtained for both methods. Functional maps and activation accuracy were compared to evaluate the performance of the novel sequence. STATISTICAL TESTS: Mean and standard deviation values were analyzed for temporal stability and acoustic noise tests. Activation maps were assessed with one-sample t-tests and contrast estimates (CE). Paired t-tests and receiver operator characteristic (ROC) were used to compare fMRI sensitivity and performance. RESULTS: Looping Star presented a 98% reduction in sound pressure compared with GE-EPI, with stable temporal stability (0.09% percent fluctuation), but reduced temporal signal-to-noise ratio (tSNR) (mean difference = 15.9%). The novel method yielded consistent activations for RS and WM (83.4% and 69.5% relative BOLD sensitivity), which increased with task difficulty (mean CE 2-back = 0.56 vs. 0-back = 0.08, P < 0.05). A few differences in spatial activations were found between sequences, leading to a 4-8% lower activation accuracy with Looping Star. DATA CONCLUSION: Looping Star provides a suitable approach for whole-brain coverage with sufficient spatiotemporal resolution and BOLD sensitivity, with only 0.5 dB above ambient noise. From the comparison with GE-EPI, further developments of Looping Star fMRI should target increased sensitivity and spatial specificity for both RS and task experiments. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:739-751.
Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición , Humanos , Estudios ProspectivosRESUMEN
PURPOSE: To develop a free-running (free-breathing, retrospective cardiac gating) 3D myocardial T1 mapping with isotropic spatial resolution. METHODS: The free-running sequence is inversion recovery (IR)-prepared followed by continuous 3D golden angle radial data acquisition. 1D respiratory motion signal is extracted from the k-space center of all spokes and used to bin the k-space data into different respiratory states, enabling estimation and correction of 3D translational respiratory motion, whereas cardiac motion is recorded using electrocardiography and synchronized with data acquisition. 3D translational respiratory motion compensated T1 maps at diastole and systole were generated with 1.5 mm isotropic spatial resolution with low-rank inversion and high-dimensionality patch-based undersampled reconstruction. The technique was validated against conventional methods in phantom and 9 healthy subjects. RESULTS: Phantom results demonstrated good agreement (R2 = 0.99) of T1 estimation with reference method. Homogeneous systolic and diastolic 3D T1 maps were reconstructed from the proposed technique. Diastolic septal T1 estimated with the proposed method (1140 ± 36 ms) was comparable to the saturation recovery single-shot acquisition (SASHA) sequence (1153 ± 49 ms), but was higher than the modified Look-Locker inversion recovery (MOLLI) sequence (1037 ± 33 ms). Precision of the proposed method (42 ± 8 ms) was comparable to MOLLI (41 ± 7 ms) and improved with respect to SASHA (87 ± 19 ms). CONCLUSIONS: The proposed free-running whole heart T1 mapping method allows for reconstruction of isotropic resolution 3D T1 maps at different cardiac phases, serving as a promising tool for whole heart myocardial tissue characterization.
Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Corazón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Electrocardiografía , Femenino , Humanos , Masculino , Movimiento/fisiología , Fantasmas de Imagen , Respiración , Sístole/fisiologíaRESUMEN
PURPOSE: To develop a previously reported, electrocardiogram (ECG)-gated, motion-resolved 5D compressed sensing whole-heart sparse MRI methodology into an automated, optimized, and fully self-gated free-running framework in which external gating or triggering devices are no longer needed. METHODS: Cardiac and respiratory self-gating signals were extracted from raw image data acquired in 12 healthy adult volunteers with a non-ECG-triggered 3D radial golden-angle 1.5 T balanced SSFP sequence. To extract cardiac self-gating signals, central k-space coefficient signal analysis (k0 modulation), as well as independent and principal component analyses were performed on selected k-space profiles. The procedure yielding triggers with the smallest deviation from those of the reference ECG was selected for the automated protocol. Thus, optimized cardiac and respiratory self-gating signals were used for binning in a compressed sensing reconstruction pipeline. Coronary vessel length and sharpness of the resultant 5D images were compared with image reconstructions obtained with ECG-gating. RESULTS: Principal component analysis-derived cardiac self-gating triggers yielded a smaller deviation ( 17.4±6.1ms ) from the reference ECG counterparts than k0 modulation ( 26±7.5ms ) or independent component analysis ( 19.8±5.2ms ). Cardiac and respiratory motion-resolved 5D images were successfully reconstructed with the automated and fully self-gated approach. No significant difference was found for coronary vessel length and sharpness between images reconstructed with the fully self-gated and the ECG-gated approach (all P≥.06 ). CONCLUSION: Motion-resolved 5D compressed sensing whole-heart sparse MRI has successfully been developed into an automated, optimized, and fully self-gated free-running framework in which external gating, triggering devices, or navigators are no longer mandatory. The resultant coronary MRA image quality was equivalent to that obtained with conventional ECG-gating.
Asunto(s)
Electrocardiografía , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador , Adulto , Técnicas de Imagen Sincronizada Cardíacas , Medios de Contraste/química , Procesamiento Automatizado de Datos , Femenino , Voluntarios Sanos , Corazón , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Movimiento (Física) , Análisis de Componente Principal , Estándares de Referencia , Valores de Referencia , Técnicas de Imagen Sincronizada RespiratoriasRESUMEN
BACKGROUND: Multiecho gradient-echo Cartesian MRI characterizes placental oxygenation by quantifying R2* . Previous research was performed at 1.5T using breath-held 2D imaging during later gestational age (GA). PURPOSE: To evaluate the accuracy and repeatability of a free-breathing (FB) 3D multiecho gradient-echo stack-of-radial technique (radial) for placental R2* mapping at 3T and report placental R2* during early GA. STUDY TYPE: Prospective. POPULATION: Thirty subjects with normal pregnancies and three subjects with ischemic placental disease (IPD) were scanned twice: between 14-18 and 19-23 weeks GA. FIELD STRENGTH: 3T. SEQUENCE: FB radial. ASSESSMENT: Linear correlation (concordance coefficient, ρc ) and Bland-Altman analyses (mean difference, MD) were performed to evaluate radial R2* mapping accuracy compared to Cartesian in a phantom. Radial R2* mapping repeatability was characterized using the coefficient of repeatability (CR) between back-to-back scans. The mean and spatial coefficient of variation (CV) of R2* was determined for all subjects, and separately for anterior and posterior placentas, at each GA range. STATISTICAL TESTS: ρc was tested for significance. Differences in mean R2* and CV were tested using Wilcoxon Signed-Rank and Rank-Sum tests. P < 0.05 was considered significant. Z-scores for the IPD subjects were determined. RESULTS: FB radial demonstrated accurate (ρc ≥0.996; P < 0.001; |MD|<0.2s-1 ) and repeatable (CR<4s-1 ) R2* mapping in a phantom, and repeatable (CR≤4.6s-1 ) R2* mapping in normal subjects. At 3T, placental R2* mean ± standard deviation was 12.9s-1 ± 2.7s-1 for 14-18 and 13.2s-1 ± 1.9s-1 for 19-23 weeks GA. The CV was significantly greater (P = 0.043) at 14-18 (0.63 ± 0.12) than 19-23 (0.58 ± 0.13) weeks GA. At 19-23 weeks, the CV was significantly lower (P < 0.001) for anterior (0.49 ± 0.08) than posterior (0.67 ± 0.11) placentas. One IPD subject had a lower mean R2* than normal subjects at both GA ranges (Z<-2). DATA CONCLUSION: FB radial provides accurate and repeatable 3D R2* mapping for the entire placenta at 3T during early GA. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:291-303.
Asunto(s)
Contencion de la Respiración , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Placenta/diagnóstico por imagen , Algoritmos , Artefactos , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Fantasmas de Imagen , Embarazo , Estudios Prospectivos , Reproducibilidad de los Resultados , RespiraciónRESUMEN
PURPOSE: A 5D whole-heart sparse imaging framework is proposed for simultaneous assessment of myocardial function and high-resolution cardiac and respiratory motion-resolved whole-heart anatomy in a single continuous noncontrast MR scan. METHODS: A non-electrocardiograph (ECG)-triggered 3D golden-angle radial balanced steady-state free precession sequence was used for data acquisition. The acquired 3D k-space data were sorted into a 5D dataset containing separated cardiac and respiratory dimensions using a self-extracted respiratory motion signal and a recorded ECG signal. Images were then reconstructed using XD-GRASP, a multidimensional compressed sensing technique exploiting correlations/sparsity along cardiac and respiratory dimensions. 5D whole-heart imaging was compared with respiratory motion-corrected 3D and 4D whole-heart imaging in nine volunteers for evaluation of the myocardium, great vessels, and coronary arteries. It was also compared with breath-held, ECG-gated 2D cardiac cine imaging for validation of cardiac function quantification. RESULTS: 5D whole-heart images received systematic higher quality scores in the myocardium, great vessels and coronary arteries. Quantitative coronary sharpness and length were always better for the 5D images. Good agreement was obtained for quantification of cardiac function compared with 2D cine imaging. CONCLUSION: 5D whole-heart sparse imaging represents a robust and promising framework for simplified comprehensive cardiac MRI without the need for breath-hold and motion correction. Magn Reson Med 79:826-838, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Corazón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Vasos Coronarios/diagnóstico por imagen , Femenino , Humanos , Masculino , Adulto JovenRESUMEN
PURPOSE: To propose a technique that can produce different T1 and T2 contrasts in a single scan for simultaneous T1 and T2 mapping of the carotid plaque (SIMPLE). METHODS: An interleaved 3D golden angle radial trajectory was used in conjunction with T2 preparation with variable duration (TEprep ) and inversion recovery pulses. Sliding window reconstruction was adopted to reconstruct images at different inversion delay time and TEprep for joint T1 and T2 fitting. In the fitting procedure, a rapid B1 correction method was presented. The accuracy of SIMPLE was investigated in phantom experiments. In vivo scans were performed on 5 healthy volunteers with 2 scans each, and on 5 patients with carotid atherosclerosis. RESULTS: The phantom T1 and T2 estimations of SIMPLE agreed well with the standard methods with the percentage difference smaller than 7.1%. In vivo T1 and T2 for normal carotid vessel wall were 1213 ± 48.3 ms and 51.1 ± 1.7 ms, with good interscan repeatability. Alternations of T1 and T2 in plaque regions were in agreement with the conventional multicontrast imaging findings. CONCLUSION: The proposed SIMPLE allows simultaneous T1 and T2 mapping of the carotid artery in less than 10 minutes, serving as a quantitative tool with good accuracy and reproducibility for plaque characterization.
Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Imagenología Tridimensional/métodos , Adulto , Anciano , Arterias Carótidas/diagnóstico por imagen , Medios de Contraste , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Reproducibilidad de los Resultados , Adulto JovenRESUMEN
PURPOSE: To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. METHODS: Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. RESULTS: Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. CONCLUSION: 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations.
Asunto(s)
Contencion de la Respiración , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Animales , Gases , Intercambio Gaseoso Pulmonar , Conejos , Respiración Artificial , Imagen de Cuerpo Entero , Isótopos de XenónRESUMEN
BACKGROUND: A previous study demonstrated the feasibility of using 3D radial ultrashort echo time (UTE) oxygen-enhanced MRI (UTE OE-MRI) for functional imaging of healthy human lungs. The repeatability of quantitative measures from UTE OE-MRI needs to be established prior to its application in clinical research. PURPOSE: To evaluate repeatability of obstructive patterns in asthma and cystic fibrosis (CF) with UTE OE-MRI with isotropic spatial resolution and full chest coverage. STUDY TYPE: Volunteer and patient repeatability. POPULATION: Eighteen human subjects (five asthma, six CF, and seven normal subjects). FIELD STRENGTH/SEQUENCE: Respiratory-gated free-breathing 3D radial UTE (80 µs) sequence at 1.5T. ASSESSMENT: Two 3D radial UTE volumes were acquired sequentially under normoxic and hyperoxic conditions. A subset of subjects underwent repeat acquisitions on either the same day or ≤15 days apart. Asthma and CF subjects also underwent spirometry. A workflow including deformable registration and retrospective lung density correction was used to compute 3D isotropic percent signal enhancement (PSE) maps. Median PSE (MPSE) and ventilation defect percent (VDP) of the lung were measured from the PSE map. STATISTICAL TESTS: The relations between MPSE, VDP, and spirometric measures were assessed using Spearman correlations. The test-retest repeatability was evaluated using Bland-Altman analysis and intraclass correlation coefficients (ICC). RESULTS: Ventilation measures in normal subjects (MPSE = 8.0%, VDP = 3.3%) were significantly different from those in asthma (MPSE = 6.0%, P = 0.042; VDP = 21.7%, P = 0.018) and CF group (MPSE = 4.5%, P = 0.0006; VDP = 27.2%, P = 0.002). MPSE correlated significantly with forced expiratory lung volume in 1 second percent predicted (ρ = 0.72, P = 0.017). The ICC of the test-retest VDP and MPSE were both ≥0.90. In all subject groups, an anterior/posterior gradient was observed with higher MPSE and lower VDP in the posterior compared to anterior regions (P ≤ 0.0021 for all comparisons). DATA CONCLUSION: 3D radial UTE OE-MRI supports quantitative differentiation of diseased vs. healthy lungs using either whole lung VDP or MPSE with excellent test-retest repeatability. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1287-1297.
Asunto(s)
Asma/diagnóstico por imagen , Fibrosis Quística/diagnóstico por imagen , Imagenología Tridimensional , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Oxígeno/química , Ventilación Pulmonar , Adulto , Aprendizaje Profundo , Femenino , Humanos , Hiperoxia/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Respiración , Pruebas de Función Respiratoria , Espirometría , Flujo de Trabajo , Adulto JovenRESUMEN
BACKGROUND: Lung T1 is a potential translational biomarker of lung disease. The precision and repeatability of variable flip angle (VFA) T1 mapping using modern 3D ultrashort echo time (UTE) imaging of the whole lung needs to be established before it can be used to assess response to disease and therapy. PURPOSE: To evaluate the feasibility of regional lung T1 quantification with VFA 3D-UTE and to investigate long- and short-term T1 repeatability in the lungs of naive mice. STUDY TYPE: Prospective preclinical animal study. POPULATION: Eight naive mice and phantoms. FIELD STRENGTH/SEQUENCE: 3D free-breathing radial UTE (8 µs) at 4.7T. ASSESSMENT: VFA 3D-UTE T1 calculations were validated against T1 values measured with inversion recovery (IR) in phantoms. Lung T1 and proton density (S0 ) measurements of whole lung and muscle were repeated five times over 1 month in free-breathing naive mice. Two consecutive T1 measurements were performed during one of the imaging sessions. STATISTICAL TESTS: Agreement in T1 between VFA 3D-UTE and IR in phantoms was assessed using Bland-Altman and Pearson 's correlation analysis. The T1 repeatability in mice was evaluated using coefficient of variation (CV), repeated-measures analysis of variance (ANOVA), and paired t-test. RESULTS: Good T1 agreement between the VFA 3D-UTE and IR methods was found in phantoms. T1 in lung and muscle showed a 5% and 3% CV (1255 ± 63 msec and 1432 ± 42 msec, respectively, mean ± SD) with no changes in T1 or S0 over a month. Consecutive measurements resulted in an increase of 2% in both lung T1 and S0 . DATA CONCLUSION: VFA 3D-UTE shows promise as a reliable T1 mapping method that enables full lung coverage, high signal-to-noise ratio (â¼25), and spatial resolution (300 µm) in freely breathing animals. The precision of the VFA 3D-UTE method will enable better design and powering of studies. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.