Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.349
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(26): 4873-4886.e10, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36513064

RESUMEN

Respiratory syncytial virus (RSV) infection is a major cause of severe lower respiratory tract infection and death in young infants and the elderly. With no effective prophylactic treatment available, current vaccine candidates aim to elicit neutralizing antibodies. However, binding and neutralization have poorly predicted protection in the past, and accumulating data across epidemiologic cohorts and animal models collectively point to a role for additional antibody Fc-effector functions. To begin to define the humoral correlates of immunity against RSV, here we profiled an adenovirus 26 RSV-preF vaccine-induced humoral immune response in a group of healthy adults that were ultimately challenged with RSV. Protection from infection was linked to opsonophagocytic functions, driven by IgA and differentially glycosylated RSV-specific IgG profiles, marking a functional humoral immune signature of protection against RSV. Furthermore, Fc-modified monoclonal antibodies able to selectively recruit effector functions demonstrated significant antiviral control in a murine model of RSV.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Ratones , Animales , Infecciones por Virus Sincitial Respiratorio/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inmunoglobulina G , Fragmentos Fc de Inmunoglobulinas , Proteínas Virales de Fusión
2.
Cell ; 184(13): 3467-3473.e11, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34133941

RESUMEN

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26)-vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. To evaluate reduced doses of Ad26.COV2.S, 30 rhesus macaques were immunized once with 1 × 1011, 5 × 1010, 1.125 × 1010, or 2 × 109 viral particles (vp) Ad26.COV2.S or sham and were challenged with SARS-CoV-2. Vaccine doses as low as 2 × 109 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125 × 1010 vp were required for protection in nasal swabs. Activated memory B cells and binding or neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show enhancement of disease. These data demonstrate that a single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.


Asunto(s)
Adenoviridae/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Femenino , Inmunogenicidad Vacunal/inmunología , Memoria Inmunológica/inmunología , Macaca mulatta , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos
3.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007262

RESUMEN

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Asunto(s)
Inmunización Pasiva/métodos , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Productos del Gen env/inmunología , Productos del Gen gag/inmunología , Productos del Gen pol/inmunología , VIH-1/inmunología , Inmunoglobulina G/inmunología , Macaca mulatta/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología
4.
Immunity ; 48(2): 227-242.e8, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29466755

RESUMEN

How chromatin reorganization coordinates differentiation and lineage commitment from hematopoietic stem and progenitor cells (HSPCs) to mature immune cells has not been well understood. Here, we carried out an integrative analysis of chromatin accessibility, topologically associating domains, AB compartments, and gene expression from HSPCs to CD4+CD8+ T cells. We found that abrupt genome-wide changes at all three levels of chromatin organization occur during the transition from double-negative stage 2 (DN2) to DN3, accompanying the T lineage commitment. The transcription factor BCL11B, a critical regulator of T cell commitment, is associated with increased chromatin interaction, and Bcl11b deletion compromised chromatin interaction at its target genes. We propose that these large-scale and concerted changes in chromatin organization present an energy barrier to prevent the cell from reversing its fate to earlier stages or redirecting to alternatives and thus lock the cell fate into the T lineages.


Asunto(s)
Linaje de la Célula , Núcleo Celular/fisiología , Cromatina/fisiología , Linfocitos T/fisiología , Animales , Diferenciación Celular , Humanos , Proteínas Represoras/fisiología , Proteínas Supresoras de Tumor/fisiología
5.
Proc Natl Acad Sci U S A ; 121(37): e2314337121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226363

RESUMEN

Epidemiological studies have revealed an inverse relationship between the incidence of Alzheimer's disease (AD) and various cancers, including colorectal cancer (CRC). We aimed to determine whether the incidence of CRC is reduced in AD-like mice and whether gut microbiota confers resistance to tumorigenesis through inducing inflammatory tolerance using 16S ribosomal RNA gene sequencing and fecal microbiota transplantation (FMT). AD-like mice experienced a significantly decreased incidence of CRC tumorigenesis induced by azoxymethane-dextran sodium sulfate as evidenced by suppressed intestinal inflammation compared with control mice. However, FMT from age-matched control mice reversed the inhibitory effects on the tumorigenesis of CRC and inflammatory response in AD-like mice. The key bacterial genera in gut microbiota, including Prevotella, were increased in both the AD-like mice and in patients with amnestic mild cognitive impairment (aMCI) but were decreased in patients with CRC. Pretreatment with low-dose Prevotella-derived lipopolysaccharides (LPS) induced inflammatory tolerance both in vivo and in vitro and inhibited CRC tumorigenesis in mice. Imbalanced gut microbiota increased intestinal barrier permeability, which facilitated LPS absorption from the gut into the blood, causing cognitive decline in AD-like mice and patients with aMCI. These data reveal that intestinal Prevotella-derived LPS exerts a resistant effect to CRC tumorigenesis via inducing inflammatory tolerance in the presence of AD. These findings provide biological evidence demonstrating the inverse relationship between the incidence of AD and CRC.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias Colorrectales , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Animales , Enfermedad de Alzheimer/microbiología , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Ratones , Humanos , Masculino , Inflamación , Disfunción Cognitiva , Femenino , Prevotella , Modelos Animales de Enfermedad , Lipopolisacáridos , Carcinogénesis , Sulfato de Dextran
6.
Semin Immunol ; 60: 101651, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-36155944

RESUMEN

Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , Enfermedades Neurodegenerativas/metabolismo , Microglía , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Encéfalo
7.
Proc Natl Acad Sci U S A ; 120(3): e2211132120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623200

RESUMEN

SARS-CoV-2 vaccines are effective at limiting disease severity, but effectiveness is lower among patients with cancer or immunosuppression. Effectiveness wanes with time and varies by vaccine type. Moreover, previously prescribed vaccines were based on the ancestral SARS-CoV-2 spike-protein that emerging variants may evade. Here, we describe a mechanistic mathematical model for vaccination-induced immunity. We validate it with available clinical data and use it to simulate the effectiveness of vaccines against viral variants with lower antigenicity, increased virulence, or enhanced cell binding for various vaccine platforms. The analysis includes the omicron variant as well as hypothetical future variants with even greater immune evasion of vaccine-induced antibodies and addresses the potential benefits of the new bivalent vaccines. We further account for concurrent cancer or underlying immunosuppression. The model confirms enhanced immunogenicity following booster vaccination in immunosuppressed patients but predicts ongoing booster requirements for these individuals to maintain protection. We further studied the impact of variants on immunosuppressed individuals as a function of the interval between multiple booster doses. Our model suggests possible strategies for future vaccinations and suggests tailored strategies for high-risk groups.


Asunto(s)
COVID-19 , Neoplasias , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , COVID-19/prevención & control , Anticuerpos Antivirales , Anticuerpos Neutralizantes
8.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38658167

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects millions of seniors in the United States. Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to study neurophysiology in AD and its prodromal condition, mild cognitive impairment (MCI). The intrinsic neural timescale (INT), which can be estimated through the magnitude of the autocorrelation of neural signals from rs-fMRI, is thought to quantify the duration that neural information is stored in a local circuit. Such heterogeneity of the timescales forms a basis of the brain functional hierarchy and captures an aspect of circuit dynamics relevant to excitation/inhibition balance, which is broadly relevant for cognitive functions. Given that, we applied rs-fMRI to test whether distinct changes of INT at different hierarchies are present in people with MCI, those progressing to AD (called Converter), and AD patients of both sexes. Linear mixed-effect model was implemented to detect altered hierarchical gradients across populations followed by pairwise comparisons to identify regional differences. High similarities between AD and Converter were observed. Specifically, the inferior temporal, caudate, and pallidum areas exhibit significant alterations in both AD and Converter. Distinct INT-related pathological changes in MCI and AD were found. For AD/Converter, neural information is stored for a longer time in lower hierarchical areas, while higher levels of hierarchy seem to be preferentially impaired in MCI leading to a less pronounced hierarchical gradient. These results inform that the INT holds great potential as an additional measure for AD prediction, even a stable biomarker for clinical diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Imagen por Resonancia Magnética , Humanos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Anciano , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Anciano de 80 o más Años , Persona de Mediana Edad , Progresión de la Enfermedad , Mapeo Encefálico/métodos
9.
Semin Cell Dev Biol ; 139: 84-92, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35370089

RESUMEN

A significant proportion of brains with Alzheimer's disease pathology are obtained from patients that were cognitively normal, suggesting that differences within the brains of these individuals made them resilient to the disease. Here, we describe recent approaches that specifically increase synaptic resilience, as loss of synapses is considered to be the first change in the brains of Alzheimer's patients. We start by discussing studies showing benefit from increased expression of neurotrophic factors and protective genes. Methods that effectively make dendritic spines stronger, specifically by acting through actin network proteins, scaffolding proteins and inhibition of phosphatases are described next. Importantly, the therapeutic strategies presented in this review tackle Alzheimer's disease not by targeting plaques and tangles, but instead by making synapses resilient to the pathology associated with Alzheimer's disease, which has tremendous potential.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Ratones , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Sinapsis/metabolismo , Actinas/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos
10.
Brain ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045644

RESUMEN

Grey matter ARTAG pathology is common in aged brains and detected in multiple brain regions. However, the associations of grey matter ARTAG with Alzheimer's disease (AD) and other common age-related proteinopathies, as well as clinical phenotypes including Alzheimer's dementia and cognitive decline remain unclear. We examined 442 decedents (mean age-at-death=90 years, males=32%) from three longitudinal community-based clinical-pathological studies. Using AT8 immunohistochemistry, grey matter ARTAG pathology was counted in the the superior frontal, anterior temporal tip, and amygdala and summarized as a severity score from 0 (none) to 6 (severe). AD and other common age-related neuropathologies were also evaluated. The diagnosis of Alzheimer's dementia was based on clinical evaluations; annual tests of cognitive performance were summarized as global cognition and five cognitive domains. Multivariable logistic regression tested the associations of grey matter ARTAG pathology with an array of age-related neuropathologies. To evaluate associations of grey matter ARTAG pathology with Alzheimer's dementia and cognitive decline, we employed logistic regression and linear mixed effect models. Grey matter ARTAG pathology was seen in 324 (73%) participants, of which 303 (68%) participants had ARTAG in the amygdala, 246 (56%) in the anterior temporal tip, and 137 (31%) in the superior frontal region. Grey matter ARTAG pathology from each of the three regions was associated with pathologic diagnosis of AD and LATE-NC but not with vascular pathology. In fully adjusted models that controlled for demographics, AD, and common age-related pathologies, an increase in severity of grey matter ARTAG pathology in the superior frontal cortex, but not in the amygdala or the anterior temporal tip, was associated with higher odds of Alzheimer's dementia and faster decline in global cognition, episodic memory, and semantic memory. These results provide compelling evidence that grey matter ARTAG, specifically in the superior frontal cortex contributes to Alzheimer's dementia and cognitive decline in old age.

11.
Brain ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527854

RESUMEN

Genome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins (proximity extension-based (PEA) immunoassays) in a deeply-phenotyped mixed-memory clinic cohort (n=502, mean age (sd) = 64.1 [8.7] years, 181 female [35.4%]), including patients with Alzheimer's disease (AD, n=213), dementia with Lewy bodies (DLB, n=50) and frontotemporal dementia (FTD, n=93), and controls (n=146). Validation was assessed in independent cohorts (n=99 PEA platform, n=198, MRM-targeted mass spectroscopy and multiplex assay). We performed additional analyses stratified according to diagnostic status (AD, DLB, FTD and controls separately), to explore whether associations between CSF proteins and genetic variants were specific to disease or not. We identified four AD risk loci as protein quantitative trait loci (pQTL): CR1-CR2 (rs3818361, P=1.65e-08), ZCWPW1-PILRB (rs1476679, P=2.73e-32), CTSH-CTSH (rs3784539, P=2.88e-24) and HESX1-RETN (rs186108507, P=8.39e-08), of which the first three pQTLs showed direct replication in the independent cohorts. We identified one AD-specific association between a rare genetic variant of TREM2 and CSF IL6 levels (rs75932628, P = 3.90e-7). DLB risk locus GBA showed positive trans effects on seven inter-related CSF levels in DLB patients only. No pQTLs were identified for frontotemporal dementia, either for the total sample as for analyses performed within FTD only. pQTL variants were involved in the immune system, highlighting the importance of this system in the pathophysiology of dementia. We further identified pQTLs in stratified analyses for AD and DLB, hinting at disease-specific pQTLs in dementia. Dissecting the contribution of risk loci to neurobiological processes aids in understanding disease mechanisms underlying dementia.

12.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38212285

RESUMEN

Increasing evidence suggests that patients with Alzheimer's disease present alterations in functional connectivity but previous results have not always been consistent. One of the reasons that may account for this inconsistency is the lack of consideration of temporal dynamics. To address this limitation, here we studied the dynamic modular organization on resting-state functional magnetic resonance imaging across different stages of Alzheimer's disease using a novel multilayer brain network approach. Participants from preclinical and clinical Alzheimer's disease stages were included. Temporal multilayer networks were used to assess time-varying modular organization. Logistic regression models were employed for disease stage discrimination, and partial least squares analyses examined associations between dynamic measures with cognition and pathology. Temporal multilayer functional measures distinguished all groups, particularly preclinical stages, overcoming the discriminatory power of risk factors such as age, sex, and APOE ϵ4 carriership. Dynamic multilayer functional measures exhibited strong associations with cognition as well as amyloid and tau pathology. Dynamic multilayer functional connectivity shows promise as a functional imaging biomarker for both early- and late-stage Alzheimer's disease diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética , Encéfalo , Péptidos beta-Amiloides , Cognición , Disfunción Cognitiva/patología
13.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39191665

RESUMEN

Metabolic syndrome exhibits associations with diverse neurological disorders, and its potential influence on the cerebral cortex may be one of the many potential factors contributing to these adverse outcomes. In this study, we aimed to investigate the causal relationship between metabolic syndrome and changes in cerebral cortex structure using Mendelian randomization analysis. Genome-wide association study data for the 5 components of metabolic syndrome were obtained from individuals of European descent in the UK Biobank. Genome-wide association study data for 34 known cortical functional regions were sourced from the ENIGMA Consortium. Data on Alzheimer's disease, major depression, and anxiety disorder were obtained from the IEU Open genome-wide association study database. The causal links between metabolic syndrome elements and cerebral cortex architecture were evaluated using inverse variance weighting, Mendelian randomization-Egger, and weighted median techniques, with inverse variance weighting as the primary method. Inverse variance weighting, Mendelian randomization Egger, weighted median, simple mode, and weighted mode methods were employed to assess the relationships between metabolic syndrome and neurological diseases (Alzheimer's disease, major depression, and anxiety disorder). Outliers, heterogeneity, and pleiotropy were assessed using Cochran's Q test, MR-PRESSO, leave-one-out analysis, and funnel plots. Globally, no causal link was found between metabolic syndrome and overall cortical thickness or surface area. However, regionally, metabolic syndrome may influence the surface area of specific regions, including the caudal anterior cingulate, postcentral, posterior cingulate, rostral anterior cingulate, isthmus cingulate, superior parietal, rostral middle frontal, middle temporal, insula, pars opercularis, cuneus, and inferior temporal. It may also affect the thickness of the medial orbitofrontal, caudal middle frontal, paracentral, superior frontal, superior parietal, and supramarginal regions. These findings were nominally significant and withstood sensitivity analyses, showing no substantial heterogeneity or pleiotropy. Furthermore, we found an association between metabolic syndrome and the risk of Alzheimer's disease, major depression, and anxiety disorder. This study suggests a potential association between metabolic syndrome and changes in cerebral cortex structure, which may underlie certain neurological disorders. Furthermore, we found an association between metabolic syndrome and the risk of Alzheimer's disease, major depression, and anxiety disorder. Early diagnosis of metabolic syndrome holds significance in preventing these neurological disorders.


Asunto(s)
Corteza Cerebral , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Síndrome Metabólico , Humanos , Síndrome Metabólico/genética , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , Masculino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Trastorno Depresivo Mayor/genética , Polimorfismo de Nucleótido Simple
14.
J Infect Dis ; 229(1): 117-121, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37565805

RESUMEN

Using a prospective, observational cohort study during the post-"dynamic COVID-zero" wave in China, we estimated short-term relative effectiveness against Omicron BA.5 infection of inhaled aerosolized adenovirus type 5-vectored ancestral strain coronavirus disease 2019 (COVID-19) vaccine as a second booster dose approximately 1 year after homologous boosted primary series of inactivated COVID-19 vaccine compared with no second booster. Participants reported nucleic acid or antigen test results weekly until they tested positive or completed predesignated follow-up. After excluding participants infected <14 days after study entry, relative effectiveness among the 6576 participants was 61% in 18- to 59-year-olds and 38% in ≥60-year-olds and was sustained for 12 weeks.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Estudios Prospectivos , Eficacia de las Vacunas , China/epidemiología , Adenoviridae/genética
15.
J Infect Dis ; 230(2): e374-e383, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38134393

RESUMEN

BACKGROUND: Since influenza and respiratory syncytial virus (RSV) carry significant burden in older adults with overlapping seasonality, vaccines for both pathogens would ideally be coadministered in this population. Here we evaluate the immunogenicity and safety of concomitant administration of Ad26.RSV.preF/RSV preF protein and high-dose seasonal influenza vaccine (Fluzone-HD) in adults ≥65 years old. METHODS: Participants were randomized 1:1 to the Coadministration or Control group. The Coadministration group received concomitant Ad26.RSV.preF/RSV preF protein and Fluzone-HD on day 1 and placebo on day 29, while the Control group received Fluzone-HD and placebo on day 1 and Ad26.RSV.preF/RSV preF protein on day 29. Influenza hemagglutination-inhibiting and RSV preF-binding antibody titers were measured postvaccination and tested for noninferiority between both groups. Safety data were collected throughout the study and analyzed descriptively. RESULTS: Coadministered Ad26.RSV.preF/RSV preF protein and Fluzone-HD vaccines induced noninferior immune responses compared to each vaccine administered alone. Seroconversion and seroprotection rates against influenza were similar between groups. Both vaccines remained well tolerated upon concomitant administration. CONCLUSIONS: Coadministration of Ad26.RSV.preF/RSV preF protein and Fluzone-HD showed an acceptable safety profile and did not hamper the immunogenicity of either vaccine, thus supporting that both vaccines can be concomitantly administered in adults ≥65 years old.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la Influenza , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Humanos , Anciano , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Femenino , Masculino , Anticuerpos Antivirales/sangre , Gripe Humana/prevención & control , Gripe Humana/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/inmunología , Anciano de 80 o más Años , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Virus Sincitial Respiratorio Humano/inmunología , Pruebas de Inhibición de Hemaglutinación , Inmunogenicidad Vacunal , Método Doble Ciego , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/inmunología
16.
J Infect Dis ; 229(4): 1068-1076, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37673423

RESUMEN

BACKGROUND: In response to recent Ebola epidemics, vaccine development against the Zaire ebolavirus (EBOV) has been fast-tracked in the past decade. Health care providers and frontliners working in Ebola-endemic areas are at high risk of contracting and spreading the virus. METHODS: This study assessed the safety and immunogenicity of the 2-dose heterologous Ad26.ZEBOV, MVA-BN-Filo vaccine regimen (administered at a 56-day interval) among 699 health care providers and frontliners taking part in a phase 2, monocentric, randomized vaccine trial in Boende, the Democratic Republic of Congo. The first participant was enrolled and vaccinated on 18 December 2019. Serious adverse events were collected up to 6 months after the last received dose. The EBOV glycoprotein FANG ELISA (Filovirus Animal Nonclinical Group enzyme-linked immunosorbent assay) was used to measure the immunoglobulin G-binding antibody response to the EBOV glycoprotein. RESULTS: The vaccine regimen was well tolerated with no vaccine-related serious adverse events reported. Twenty-one days after the second dose, an EBOV glycoprotein-specific binding antibody response was observed in 95.2% of participants. CONCLUSIONS: The 2-dose vaccine regimen was well tolerated and led to a high antibody response among fully vaccinated health care providers and frontliners in Boende.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vacuna contra Viruela , Animales , Humanos , República Democrática del Congo , Anticuerpos Antivirales , Glicoproteínas , Inmunogenicidad Vacunal , Vacunas Atenuadas
17.
J Biol Chem ; 299(7): 104905, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302553

RESUMEN

A primary pathology of Alzheimer's disease (AD) is amyloid ß (Aß) deposition in brain parenchyma and blood vessels, the latter being called cerebral amyloid angiopathy (CAA). Parenchymal amyloid plaques presumably originate from neuronal Aß precursor protein (APP). Although vascular amyloid deposits' origins remain unclear, endothelial APP expression in APP knock-in mice was recently shown to expand CAA pathology, highlighting endothelial APP's importance. Furthermore, two types of endothelial APP-highly O-glycosylated APP and hypo-O-glycosylated APP-have been biochemically identified, but only the former is cleaved for Aß production, indicating the critical relationship between APP O-glycosylation and processing. Here, we analyzed APP glycosylation and its intracellular trafficking in neurons and endothelial cells. Although protein glycosylation is generally believed to precede cell surface trafficking, which was true for neuronal APP, we unexpectedly observed that hypo-O-glycosylated APP is externalized to the endothelial cell surface and transported back to the Golgi apparatus, where it then acquires additional O-glycans. Knockdown of genes encoding enzymes initiating APP O-glycosylation significantly reduced Aß production, suggesting this non-classical glycosylation pathway contributes to CAA pathology and is a novel therapeutic target.


Asunto(s)
Acetilgalactosamina , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Angiopatía Amiloide Cerebral , Glicosilación , Animales , Ratones , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/biosíntesis , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Células Endoteliales/metabolismo , Transporte de Proteínas , Neuronas/metabolismo , Aparato de Golgi/metabolismo , Acetilgalactosamina/metabolismo
18.
Neuroimage ; 292: 120609, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614371

RESUMEN

Current diagnostic systems for Alzheimer's disease (AD) rely upon clinical signs and symptoms, despite the fact that the multiplicity of clinical symptoms renders various neuropsychological assessments inadequate to reflect the underlying pathophysiological mechanisms. Since putative neuroimaging biomarkers play a crucial role in understanding the etiology of AD, we sought to stratify the diverse relationships between AD biomarkers and cognitive decline in the aging population and uncover risk factors contributing to the diversities in AD. To do so, we capitalized on a large amount of neuroimaging data from the ADNI study to examine the inflection points along the dynamic relationship between cognitive decline trajectories and whole-brain neuroimaging biomarkers, using a state-of-the-art statistical model of change point detection. Our findings indicated that the temporal relationship between AD biomarkers and cognitive decline may differ depending on the synergistic effect of genetic risk and biological sex. Specifically, tauopathy-PET biomarkers exhibit a more dynamic and age-dependent association with Mini-Mental State Examination scores (p<0.05), with inflection points at 72, 78, and 83 years old, compared with amyloid-PET and neurodegeneration (cortical thickness from MRI) biomarkers. In the landscape of health disparities in AD, our analysis indicated that biological sex moderates the rate of cognitive decline associated with APOE4 genotype. Meanwhile, we found that higher education levels may moderate the effect of APOE4, acting as a marker of cognitive reserve.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Disfunción Cognitiva , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Apolipoproteínas E/genética , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Imagen por Resonancia Magnética , Neuroimagen , Tomografía de Emisión de Positrones
19.
Neuroimage ; 298: 120778, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122057

RESUMEN

BACKGROUND: Clinical and translational research has identified deficits in the dopaminergic neurotransmission in the striatum in Alzheimer's disease (AD) and this could be related to the pathophysiology of psychiatric symptoms appearing even at early stages of the pathology. HYPOTHESIS: We hypothesized that AD pathology in the hippocampus may influence dopaminergic neurotransmission even in the absence of AD-related lesion in the mesostriatal circuit. METHODS: We chemogenetically manipulated the activity of hippocampal neurons and astrocytes in wild-type and hemizygous TgF344-AD (Tg) rats, an animal model of AD pathology. We assessed the brain-wide functional output of this manipulation using in vivo Single Photon Emission Computed Tomography to measure cerebral blood flow and D2/3 receptor binding, in response to acute (3 mg kg-1 i.p.) and chronic (0.015 mg/ml in drinking water, 28 days) stimulation of neurons or astrocytes with clozapine N-oxide. We also assessed the effects of the chronic chemogenetic manipulations on D2 receptor density, low or high aggregated forms of amyloid Aß40 and Aß42, astrocytes and microglial reactivity, and the capacity of astrocytes and microglia to surround and phagocytize Aß both locally and in the striatum. RESULTS: We showed that acute and chronic neuronal and astrocytic stimulation induces widespread effects on the brain regional activation pattern, notably with an inhibition of striatal activation. In the Tg rats, both these effects were blunted. Chemogenetic stimulation in the hippocampus increased microglial density and its capacity to limit AD pathology, whereas these effects were absent in the striatum perhaps as a consequence of the altered connectivity between the hippocampus and the striatum. CONCLUSIONS: Our work suggests that hippocampal AD pathology may alter mesostriatal signalling and induce widespread alterations of brain activity. Neuronal and astrocytic activation may induce a protective, Aß-limiting phenotype of microglia, which surrounds Aß plaques and limits Αß concentration more efficiently.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Cuerpo Estriado , Dopamina , Hipocampo , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Astrocitos/metabolismo , Ratas , Hipocampo/metabolismo , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Masculino , Modelos Animales de Enfermedad , Locomoción/fisiología , Locomoción/efectos de los fármacos , Ratas Endogámicas F344 , Péptidos beta-Amiloides/metabolismo , Ratas Transgénicas , Receptores de Dopamina D2/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Microglía/metabolismo
20.
Neuroimage ; 299: 120825, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39214438

RESUMEN

As an important biomarker of neural aging, the brain age reflects the integrity and health of the human brain. Accurate prediction of brain age could help to understand the underlying mechanism of neural aging. In this study, a cross-stratified ensemble learning algorithm with staking strategy was proposed to obtain brain age and the derived predicted age difference (PAD) using T1-weighted magnetic resonance imaging (MRI) data. The approach was characterized as by implementing two modules: one was three base learners of 3D-DenseNet, 3D-ResNeXt, 3D-Inception-v4; another was 14 secondary learners of liner regressions. To evaluate performance, our method was compared with single base learners, regular ensemble learning algorithms, and state-of-the-art (SOTA) methods. The results demonstrated that our proposed model outperformed others models, with three metrics of mean absolute error (MAE), root mean-squared error (RMSE), and coefficient of determination (R2) of 2.9405 years, 3.9458 years, and 0.9597, respectively. Furthermore, there existed significant differences in PAD among the three groups of normal control (NC), mild cognitive impairment (MCI) and Alzheimer's disease (AD), with an increased trend across NC, MCI, and AD. It was concluded that the proposed algorithm could be effectively used in computing brain aging and PAD, and offering potential for early diagnosis and assessment of normal brain aging and AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA