Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 731
Filtrar
Más filtros

Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 71, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915066

RESUMEN

OBJECTIVE: To investigate the association between liver enzymes and ovarian cancer (OC), and to validate their potential as biomarkers and their mechanisms in OC. Methods Genome-wide association studies for OC and levels of enzymes such as Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase, and gamma-glutamyltransferase were analyzed. Univariate and multivariate Mendelian randomization (MR), complemented by the Steiger test, identified enzymes with a potential causal relationship to OC. Single-cell transcriptomics from the GSE130000 dataset pinpointed pivotal cellular clusters, enabling further examination of enzyme-encoding gene expression. Transcription factors (TFs) governing these genes were predicted to construct TF-mRNA networks. Additionally, liver enzyme levels were retrospectively analyzed in healthy individuals and OC patients, alongside the evaluation of correlations with cancer antigen 125 (CA125) and Human Epididymis Protein 4 (HE4). RESULTS: A total of 283 single nucleotide polymorphisms (SNPs) and 209 SNPs related to ALP and AST, respectively. Using the inverse-variance weighted method, univariate MR (UVMR) analysis revealed that ALP (P = 0.050, OR = 0.938) and AST (P = 0.017, OR = 0.906) were inversely associated with OC risk, suggesting their roles as protective factors. Multivariate MR (MVMR) confirmed the causal effect of ALP (P = 0.005, OR = 0.938) on OC without reverse causality. Key cellular clusters including T cells, ovarian cells, endothelial cells, macrophages, cancer-associated fibroblasts (CAFs), and epithelial cells were identified, with epithelial cells showing high expression of genes encoding AST and ALP. Notably, TFs such as TCE4 were implicated in the regulation of GOT2 and ALPL genes. OC patient samples exhibited decreased ALP levels in both blood and tumor tissues, with a negative correlation between ALP and CA125 levels observed. CONCLUSION: This study has established a causal link between AST and ALP with OC, identifying them as protective factors. The increased expression of the genes encoding these enzymes in epithelial cells provides a theoretical basis for developing novel disease markers and targeted therapies for OC.


Asunto(s)
Fosfatasa Alcalina , Biomarcadores de Tumor , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Polimorfismo de Nucleótido Simple/genética , Análisis de la Célula Individual/métodos , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/sangre , Biomarcadores de Tumor/genética , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/genética , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/metabolismo , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/sangre , Hígado/patología , Hígado/metabolismo , Alanina Transaminasa/sangre , Alanina Transaminasa/genética , gamma-Glutamiltransferasa/genética , gamma-Glutamiltransferasa/sangre , Antígeno Ca-125/genética , Regulación Neoplásica de la Expresión Génica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de la Membrana/genética , Persona de Mediana Edad
2.
Curr Issues Mol Biol ; 46(5): 4489-4505, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38785540

RESUMEN

In this work, we propose a new technique involving the modification of commercial screen-printed carbon electrodes with electrochemically reduced graphene oxide to serve as the starting point of a future electrochemical biosensor for the detection of two osteogenic biomarkers: alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2). The electrodes were characterized after each modification by cyclic voltammetry and electrochemical impedance spectroscopy, showing the appropriate electrochemical characteristics for each modification type. The results obtained from scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements are well correlated with each other, demonstrating the successful modification of the electrodes with graphene oxide and its subsequent reduction. The bioreceptors were immobilized on the electrodes by physical adsorption, which was confirmed by electrochemical methods, structural characterization, and contact angle measurements. Finally, the functionalized electrodes were incubated with the specific target analytes and the detection relied on monitoring the electrochemical changes occurring after the hybridization process. Our results indicated that the pilot platform has the ability to detect the two biomarkers up to 1 nM, with increased sensitivity observed for RUNX2, suggesting that after further optimizations, it has a high potential to be employed as a future biosensor.

3.
J Periodontal Res ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225294

RESUMEN

AIM: Ascorbic acid (AA) is a water-soluble vitamin that has antioxidant properties and regulates homeostasis of connective tissue through controlling various enzymatic activities. Two cell surface glycoproteins, sodium-dependent vitamin C transporter (SVCT) 1 and SVCT2, are known as ascorbate transporters. The purpose of this study was to investigate the expression pattern and functions of SVCTs in periodontal ligament (PDL) and PDL fibroblast (PDLF). METHODS: Gene expression was examined using real-time polymerase chain reaction (PCR) and reverse transcription PCR. SVCT2 expression was determined by immunofluorescence staining, western blot and flow cytometry. ALP activity and collagen production were examined using ALP staining and collagen staining. Short interfering RNA was used to knock down the gene level of SVCT2. Change of comprehensive gene expression under SVCT2 knockdown condition was examined by RNA-sequencing analysis. RESULTS: Real-time PCR, fluorescent immunostaining, western blot and flowy cytometry showed that SVCT2 was expressed in PDLF and PDL. ALP activity, collagen production, and SVCT2 expression were enhanced upon AA stimulation in PDLF. The enhancement of ALP activity, collagen production, and SVCT2 expression by AA was abolished under SVCT2 knockdown condition. RNA-sequencing revealed that gene expression of CLDN4, Cyclin E2, CAMK4, MSH5, DMC1, and Nidgen2 were changed by SVCT2 knockdown. Among them, the expression of MSH5 and DMC1, which are related to DNA damage sensor activity, was enhanced by AA, suggesting the new molecular target of AA in PDLF. CONCLUSION: Our study reveals the SVCT2 expression in PDL and the pivotal role of SVCT2 in mediating AA-induced enhancements of ALP activity and collagen production in PDLF. Additionally, we identify alterations in gene expression profiles, highlighting potential molecular targets influenced by AA through SVCT2. These findings deepen our understanding of periodontal tissue homeostasis mechanisms and suggest promising intervention targeting AA metabolism.

4.
Anal Bioanal Chem ; 416(24): 5317-5324, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39107581

RESUMEN

This study introduces an innovative approach for the real-time and efficient detection of alkaline phosphatase (ALP) activity, using a calcein fluorescence probe and leveraging the static quenching properties of calcein fluorescence by Ce3+ metal ions. In this method, calcein serves as the signal element, with its fluorescence effectively preserved through energy transfer or charge transfer when coordinated with Ce3+. Conversely, ALP catalyzes the phosphopeptide substrate to generate a substantial amount of Pi, preventing calcein fluorescence quenching due to the higher affinity between Pi and Ce3+ compared with that between calcein and Ce3+. The fluorescence intensity ratio (F-F0/F0) exhibited excellent linearity, facilitating sensitive ALP detection. The proposed ALP detection method covers a range from 0 to 1.4 mU/mL (R2 = 0.9942), with the limit of detection at 0.069 mU/mL (S/N = 3). Additionally, this method was successfully applied for detecting ALP in serum samples and studying its inhibitors. This research introduces a novel clinical diagnosis approach for ALP sensing while broadening the potential applications of calcein.


Asunto(s)
Fosfatasa Alcalina , Fluoresceínas , Colorantes Fluorescentes , Límite de Detección , Espectrometría de Fluorescencia , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/análisis , Fluoresceínas/química , Colorantes Fluorescentes/química , Humanos , Espectrometría de Fluorescencia/métodos , Cerio/química , Fluorescencia
5.
Mikrochim Acta ; 191(7): 439, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954110

RESUMEN

A Pyrococcus furiosus Argonaute (PfAgo)-based biosensor is presented for alkaline phosphatase (ALP) activity detection in which the ALP-catalyzed hydrolysis of 3'-phosphate-modified functional DNA activates the strand displacement amplification, and the amplicon mediates the fluorescent reporter cleavage as a guide sequence of PfAgo. Under the dual amplification mode of PfAgo-catalyzed multiple-turnover cleavage activity and pre-amplification technology, the developed method was successfully applied to ALP activity determination with a detection limit (LOD) of 0.0013 U L-1 (3σ) and a detection range of 0.0025 to 1 U L-1 within 90 min. The PfAgo-based method exhibits satisfactory analytic performance in the presence of potential interferents and in complex human serum samples. The proposed method shows several advantages, such as rapid analysis, high sensitivity, low-cost, and easy operation, and has great potential in disease evolution fundamental studies and clinical diagnosis applications.


Asunto(s)
Fosfatasa Alcalina , Técnicas Biosensibles , Límite de Detección , Pyrococcus furiosus , Técnicas Biosensibles/métodos , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Humanos , Pyrococcus furiosus/enzimología , Proteínas Argonautas/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Pruebas de Enzimas/métodos
6.
BMC Oral Health ; 24(1): 119, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245737

RESUMEN

BACKGROUND: As calcium silicate-based cements (CSCs) have found success in various vital pulp therapy applications, several new CSC products have emerged. This study aimed to assess the genotoxicity, cytotoxicity, and bioactivity of four CSCs by comparing the newly introduced materials Bio MTA+ and MTA Cem with previously studied materials, Biodentine and NeoMTA. METHODS: Genotoxicity was evaluated using the micronucleus (MN) assay in human peripheral blood lymphocyte cells, measuring MN frequency and nuclear division index (NDI). Cytotoxicity was assessed in human dental pulp stem cells through the Water-Soluble Tetrazolium Salt-1 (WST-1) colorimetric assay. Bioactivity was determined by ELISA, measuring the levels of angiogenic and odontogenic markers (BMP-2, FGF-2, VEGF, and ALP). Statistical analyses included ANOVA, Dunnet and Sidak tests, and Wald chi-square test. (p < .05). RESULTS: The MN frequency in the groups was significantly lower than that in the positive control group (tetraconazole) (p < .05). NDI values decreased with increasing concentration (p < .05). Bio MTA+ and NeoMTA showed decreased cell viability at all concentrations in 7-day cultures (p < .01). All materials increased BMP-2, FGF-2, and VEGF levels, with Biodentine and NeoMTA showing the highest levels of BMP-2 and FGF-2 on day 7. Biodentine displayed the highest VEGF levels on day 7. Biodentine and NeoMTA groups exhibited significantly higher ALP activity than the Bio MTA+ and MTA Cem groups by day 7. CONCLUSION: Bio MTA+ and MTA Cem demonstrated no genotoxic or cytotoxic effects. Moreover, this study revealed bioactive potentials of Bio MTA+ and MTA Cem by enhancing the expression of angiogenic and osteogenic growth factors.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Factor A de Crecimiento Endotelial Vascular , Humanos , Ensayo de Materiales , Óxidos/toxicidad , Compuestos de Calcio/toxicidad , Silicatos/toxicidad , Combinación de Medicamentos , Compuestos de Aluminio , Cementos Dentales/toxicidad
7.
J Pak Med Assoc ; 74(7): 1374-1375, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39028076

RESUMEN

This review delves into relatively less discussed role of alkaline phosphatase (ALP) as an accessible alternative to intact parathyroid hormone (iPTH) in the context of bone health assessment, particularly focussing on its potential boon for underprivileged individuals with chronic kidney disease (CKD) in South Asia. The financial constraints faced by this demographic often hinder regular monitoring of iPTH levels. ALP emerges as a promising surrogate, offering a cost-effective and practical solution for bone health evaluation in resource-constrained settings.


Asunto(s)
Fosfatasa Alcalina , Hormona Paratiroidea , Humanos , Fosfatasa Alcalina/sangre , Hormona Paratiroidea/sangre , Insuficiencia Renal Crónica/sangre , Biomarcadores/sangre , Densidad Ósea
8.
Indian J Clin Biochem ; 39(4): 548-556, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39346709

RESUMEN

The COVID-19 pandemic has underscored the critical importance of understanding the intricate relationship between micronutrient levels and disease outcomes. This study explores the impact of Vitamin D, calcium, phosphorus, magnesium, and alkaline phosphatase (ALP) on COVID-19 severity and mortality. The study involves 200 participants (100 COVID-19 patients, 100 controls), we meticulously analyzed micronutrient dynamics. Calcium, phosphorus, magnesium and ALP was measured spectrophotometrically. Vitamin D was measured using Chemiluminescent method. The study reveals that diminished levels of calcium, phosphorus, magnesium, and with elevated ALP, are significantly associated with COVID-19 cases. Whereas the Vitamin D levels in severe group was increased when compared to mild cases but decreased than control group. Disease severity correlated with declining calcium (r = - 0.35, p < 0.01), phosphorus (r = - 0.26, p < 0.05), and magnesium (r = - 0.21, p < 0.05), and increased ALP (r = 0.42, p < 0.001). Post-discharge, calcium (p < 0.05) and phosphorus (p < 0.01) showed positive trends, while ALP (p < 0.001) decreased. Notably, calcium (OR = 0.63, p < 0.05) and ALP (OR = 1.87, p < 0.001) emerged as significant predictors of disease severity. The findings not only illuminate potential therapeutic avenues but also emphasize the need to optimize nutrient levels, including magnesium, for COVID-19 prevention and management. Given the complexities of these relationships, further rigorous exploration, including well-designed trials and understanding underlying mechanisms, is imperative to unravel the dynamics of these nutrient interactions in the context of COVID-19. Supplementary Information: The online version contains supplementary material available at 10.1007/s12291-024-01225-9.

9.
Curr Issues Mol Biol ; 45(7): 5967-5980, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37504293

RESUMEN

Alveolar bone resorption is a post-extraction complication wherein there is a reduction in the dimensions and quality of the alveolar bone. This study aimed to examine the effects of implantation of a combination of nanocrystalline hydroxyapatite (nHA) and injectable platelet-rich fibrin (IPRF) on the expression of tartrate-resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), osteocalcin (OCN), and new bone formation. A total of 32 male rats had their upper right incisors extracted under general anesthesia and were then divided into a control group, nHA group, IPRF group, and nHA-IPRF group. Decapitation was carried out on day 14 and day 28 in each group and the jaws of each rat were subjected to immunohistochemical and histological analysis. The results showed a decrease in TRAP expression in the nHA-IPRF group compared with the control group on day 14 (p = 0.074) and day 28 (p = 0.017). The study also showed an increase in ALP and OCN in the HA-IPRF group on day 14 and day 28 compared with the control group. New bone formation suggested a significant increase in the nHA-IPRF group compared with the control group on day 14 (p = 0.001) and day 28 (p = 0.001). nHA-IPRF implantation can suppress alveolar bone resorption, which is indicated by decreased TRAP expression, and it can increase bone growth, as indicated by increased expression of ALP, OCN, and new bone formation.

10.
Microb Pathog ; 182: 106165, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37224983

RESUMEN

AIMS: To evaluate the potential of Myricetin against S.aureus induced osteomyelitis. BACKGROUND: Osteomyelitis is infected condition of bone by micro-organisms. The mitogen-activated protein kinase (MAPK), inflammatory cytokines and Toll-like receptor-2 (TLR-2) pathway are mainly involved in osteomyelitis. Myricetin is a plant-food derived flavonoid which shows anti-inflammatory activity. OBJECTIVE: In the present study, we evaluated the potential of Myricetin against S.aureus induced osteomyelitis. MC3T3-E1 cells were used for in vitro studies. METHOD: Murine model of osteomyelitis was developed in BALB/c mice by injecting S.aureus in the medullary cavity of the femur. The mice were studied for bone destruction, anti-biofilm activity, osteoblast growth markers alkaline phosphatase (ALP), osteopontin (OCN) and collagen type-I (COLL-1) were studied by RT-PCR, ELISA analysis for levels of proinflammatory factors CRP, IL-6 and IL-1ß. Expression of proteins by Western blot analysis and anti-biofilm effect by Sytox green dye fluorescence assay. Target confirmation was done by performing in silico docking analysis. RESULTS: Myricetin reduced bone destruction in osteomyelitis induced mice. The treatment decreased bone levels of ALP, OCN, COLL-1 and TLR2. Myricetin decreased serum levels of CRP, IL-6 and IL-1ß. The treatment suppressed activation of MAPK pathway and showed anti-biofilm effect. Docking studies suggested high binding affinity of Myricetin with MAPK protein in silico, by showing lower binding energies. CONCLUSION: Myricetin suppresses osteomyelitis by inhibiting ALP, OCN, COLL-1 via the TLR2 and MAPK pathway involving inhibition of biofilm formation. In silico studies suggested MAPK as potential binding protein for myricetin.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Osteomielitis , Ratones , Animales , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Interleucina-6 , Flavonoides/farmacología , Osteomielitis/tratamiento farmacológico
11.
Calcif Tissue Int ; 112(2): 148-157, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34846540

RESUMEN

Bone turnover markers (BTMs) are released during the bone remodelling cycle and are measurable in blood or urine, reflecting bone remodelling rate. They have been useful in elucidating the pharmacodynamics and effectiveness of osteoporosis medication in clinical trials and are increasingly used in routine clinical management of osteoporosis, especially for monitoring therapy, in addition to their use in other metabolic bone disease such as Paget's disease of bone and osteomalacia. Serum ß isomerised C-terminal telopeptide of type I collagen and pro-collagen I N-terminal propeptide have been designated as reference BTMs for use in osteoporosis. In addition, bone-specific isoenzyme of alkaline phosphatase (B-ALP) secreted by osteoblasts and tartrate-resistant acid phosphatase 5b (TRACP-5b) secreted by osteoclasts are also found to be specific markers of bone formation and resorption, respectively. The concentrations of the latter enzymes in blood measured by immunoassay provide reliable measures of bone turnover even in the presence of renal failure. B-ALP is recommended for use in the assessment of renal bone disease of chronic kidney disease, and TRACP-5b shows promise as a marker of bone resorption in that condition. BTMs in blood do not suffer from biological variation to the same extent as the older BTMs that were measured in urine. Appropriate patient preparation and sample handling are important in obtaining accurate measures of BTMs for clinical use. Reference change values and treatment targets have been determined for the reference BTMs for their use in monitoring osteoporosis treatment. Further ongoing studies will enhance their clinical applications.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Humanos , Fosfatasa Ácida Tartratorresistente , Osteoporosis/tratamiento farmacológico , Colágeno Tipo I , Fosfatasa Alcalina , Remodelación Ósea , Biomarcadores
12.
Nanotechnology ; 34(29)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129108

RESUMEN

Recent progress in thein situsynthesise of various nanomaterials has gained tremendous interest and wide applications in various fields. For the first time to the best of our knowledge, this work reports a methodology of ultra-fastin situsynthesis of cobalt-cobalt oxide-reduced graphene oxide (Co-Co3O4-rGO (CC-rGO)) composite by laser ablation. The photothermal reduction technique was leveraged to develop the CC-rGO. For this, a low-cost 450 nm blue diode laser was irradiated onto a grade 1 filter paper in the presence of cobalt ions readily patterns the carbon matrix of paper to the composite material. Moreover, the variation of cobalt concentrations from 0.1-0.5 M led to structural and morphological changes. Standard techniques were adopted for thorough characterizations of developed sensor material for conductivity analysis, specific surface area, crystal-structural information, surface morphology, and chemical composition. The observed results were highly promoting towards the electrochemical sensing applications. Further, the developed sensor was found to be highly selective toward detecting a vital bio analyte alkaline phosphatase (ALP). The sensors performance was highly significant in the linear range of 10-800 mU l-1with a detection limit of 10.13 mU l-1. The sensors applicability was further validated in actual human serum samples via a recovery-based approach. In the future, the developedin situmaterial methodology can begin a rapid composite material synthesis at a larger scale.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanocompuestos , Humanos , Fosfatasa Alcalina , Grafito/química , Cobalto/química , Nanocompuestos/química , Colorantes , Técnicas Biosensibles/métodos , Rayos Láser , Técnicas Electroquímicas/métodos
13.
J Fluoresc ; 33(2): 587-594, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36456791

RESUMEN

The glutathione (GSH) functionalized Mn-doped ZnS quantum dots (GSH_Mn_ZnS QDs) was conjugated with pyridoxal 5'-phosphate (PLP). The -CHO group of vitamin B6 cofactor PLP interacted with the -NH2 group of GSH functionalized Mn_ZnS QDs. The conjugation of PLP quenched the fluorescence emission of GSH_Mn_ZnS QDs at 601 nm. Addition of alkaline phosphatase (ALP) catalytically dephosphorylated the PLP into pyridoxal that restored the fluorescence emission of GSH_Mn_ZnS QDs. With a sensitivity of 0.035 U/L, the PLP conjugated GSH_Mn_ZnS QDs was applied to quantify ALP activity in human serum and plasma. Further, the developed nanoprobe PLP conjugated GSH_Mn_ZnS QDs was also applied to detect Al3+. The complexation-induced fluorescence enhancement was observed at 492 nm upon the interaction of Al3+ with the PLP conjugated GSH_Mn_ZnS QDs. Without any interference from other tested metal ions, this nanoprobe can be employed to detect Al3+ down to 2.30 µM.


Asunto(s)
Puntos Cuánticos , Humanos , Fosfatasa Alcalina , Fluorescencia , Glutatión , Piridoxal , Sulfuros , Vitamina B 6 , Vitaminas , Compuestos de Zinc , Aluminio/farmacología
14.
J Biochem Mol Toxicol ; 37(11): e23454, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37409753

RESUMEN

In spite of recent advances made in understanding its progression, cancer is still a leading cause of death across the nations. Molecular pathophysiology of these cancer cells largely differs depending on cancer types and even within the same tumor. Pathological mineralization/calcification is seen in various tissues including breast, prostate, and lung cancer. Osteoblast-like cells derived after trans-differentiation of mesenchymal cells usually drive calcium deposition in various tissues. This study aims to explore the presence of osteoblast-like potential in lung cancer cells and its prevention. ALP assay, ALP staining, nodule formation, RT-PCR, RT-qPCR, and western blot analysis experiments were carried out in lung cancer A549 cells to achieve said objective. Expressions of various osteoblast markers (e.g., ALP, OPN, RUNX2, and Osterix) along with osteoinducer genes (BMP-2 and BMP-4) were observed in A549 cells. Moreover, ALP activity and ability leading to nodule formation revealed the presence of osteoblast-like potential in lung cancer cells. Here, BMP-2 treatment increased expressions of osteoblast transcription factors such as RUNX2 and Osterix, enhanced ALP activity, and augmented calcification in this cell line. It was also observed that antidiabetic metformin inhibited BMP-2 mediated increase in osteoblast-like potential and calcification in these cancer cells. The current study noted that metformin blocked BMP-2 mediated increase in epithelial to mesenchymal transition (EMT) in A549 cells. The above findings for the first time unravel that A549 cells possess osteoblast-like potential which drives lung cancer calcification. Metformin might prevent BMP-2 induced osteoblast-like phenotype of the lung cancer cells with concomitant inhibition of EMT to inhibit lung cancer tissue calcification.


Asunto(s)
Neoplasias Pulmonares , Metformina , Masculino , Humanos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Neoplasias Pulmonares/metabolismo , Transición Epitelial-Mesenquimal , Metformina/farmacología , Células A549 , Diferenciación Celular , Osteoblastos/metabolismo , Osteogénesis
15.
Biometals ; 36(6): 1221-1239, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37258944

RESUMEN

The flavonoid naringenin and a family of naringenin derivative Cu(II) complexes having phenanthroline-based second ligands were selected to study alkaline phosphatase activation. This enzyme plays a critical role in tissue formation, increasing the inorganic phosphate formation, favoring mineralization, and being essential to producing bone mineralization. The effects of those compounds on the function and structure of the enzyme were evaluated by kinetic measurements, fluorescence, FTIR, and UV-Vis spectroscopies. The results showed that naringenin did not affect alkaline phosphatase activity, having a value of the Michaelis-Menten-constant close to the enzyme (Km = 3.07 × 10-6). The binary complex, Cu(II)-naringenin, and the ternary complex Cu(II)-naringenin-phenanthroline behaved as an enzyme activator in all the concentrations range used in this study. Those complexes increased in c.a. 1.9% the catalytic efficiency concerning enzyme and naringenin. The ternary complex Cu(II)-naringenin-bathophenanthroline, provokes an activator mixed effect, dependent on the substrate concentrations. The different kinetic behavior can be correlated with different conformational changes observed under the interaction with ALP. Fluorescence experiments showed a raising of the binding constant with temperature. FTIR determinations showed that the complex with bathophenanthroline modifies the ALP structure but maintains the helical structure. The other copper complexes provoked a structural unfolding, decreasing the α-helix content. None of them affect the dephosphorylation enzyme ability. Even though the interactions and structural modifications on ALP are different, it is evident that the presence of copper favors enzymatic activity. The observed electrostatic interactions probably benefit the dissociation of the bound phosphate. The results suggest potential biological applications for the studied compounds.


Asunto(s)
Complejos de Coordinación , Cobre , Cobre/química , Fosfatasa Alcalina , Flavonoides , Fenantrolinas/química , Colorantes , Complejos de Coordinación/química
16.
Environ Res ; 221: 115228, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610539

RESUMEN

While occupational exposures to volatile organic compounds (VOCs) have been linked to steatohepatitis and liver cancer in industrial workers, recent findings have also positively correlated low-dose, residential VOC exposures with liver injury markers. VOC sources are numerous; factors including biological make up (sex), socio-cultural constructs (gender, race) and lifestyle (smoking) can influence both VOC exposure levels and disease outcomes. Therefore, the current study's objective is to investigate how sex and race influence associations between residential VOC exposures and liver injury markers particularly in smokers vs. nonsmokers. Subjects (n = 663) were recruited from residential neighborhoods; informed consent was obtained. Exposure biomarkers included 16 urinary VOC metabolites. Serological disease biomarkers included liver enzymes, direct bilirubin, and hepatocyte death markers (cytokeratin K18). Pearson correlations and generalized linear models were conducted. Models were adjusted for common liver-related confounders and interaction terms. The study population constituted approximately 60% females (n = 401) and 40% males (n = 262), and a higher percent of males were smokers and/or frequent drinkers. Both sexes had a higher percent of White (75% females, 82% males) vs. Black individuals. Positive associations were identified for metabolites of acrolein, acrylamide, acrylonitrile, butadiene, crotonaldehyde, and styrene with alkaline phosphatase (ALP), a biomarker for cholestatic injury; and for the benzene metabolite with bilirubin; only in females. These associations were retained in female smokers. Similar associations were also observed between these metabolites and ALP only in White individuals (n = 514). In Black individuals (n = 114), the styrene metabolite was positively associated with aspartate transaminase. Interaction models indicated that positive associations for acrylamide/crotonaldehyde metabolites with ALP in females were dose-dependent. Most VOC associations with K18 markers were negative in this residential population. Overall, the findings demonstrated that biological sex, race, and smoking status influence VOC effects on liver injury and underscored the role of biological-social-lifestyle factor(s) interactions when addressing air pollution-related health disparities.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Masculino , Humanos , Femenino , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Hígado/química , Biomarcadores/orina , Acrilamidas , Estirenos
17.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834536

RESUMEN

Dermal papilla cells (DPCs) play important roles in hair growth regulation. However, strategies to regrow hair are lacking. Here, global proteomic profiling identified the tetrathiomolybdate (TM)-mediated inactivation of copper (Cu) depletion-dependent mitochondrial cytochrome c oxidase (COX) as the primary metabolic defect in DPCs, leading to decreased Adenosine Triphosphate (ATP) production, mitochondrial membrane potential depolarization, increased total cellular reactive oxygen species (ROS) levels, and reduced expression of the key marker of hair growth in DPCs. By using several known mitochondrial inhibitors, we found that excessive ROS production was responsible for the impairment of DPC function. We therefore subsequently showed that two ROS scavengers, N-acetyl cysteine (NAC) and ascorbic acid (AA), partially prevented the TM- and ROS-mediated inhibition of alkaline phosphatase (ALP). Overall, these findings established a direct link between Cu and the key marker of DPCs, whereby copper depletion strongly impaired the key marker of hair growth in the DPCs by increasing excessive ROS production.


Asunto(s)
Dermis , Folículo Piloso , Folículo Piloso/metabolismo , Células Cultivadas , Fosfatasa Alcalina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Cobre/metabolismo , Proliferación Celular
18.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835067

RESUMEN

The use of collagen membranes has remained the gold standard in GTR/GBR. In this study, the features and the biological activities of an acellular porcine dermis collagen matrix membrane applicable during dental surgery were investigated, and also by applying hydration with NaCl. Thus, two tested membranes were distinguished, the H-Membrane and Membrane, compared to the control cell culture plastic. The characterization was performed by SEM and histological analyses. In contrast, the biocompatibility was investigated on HGF and HOB cells at 3, 7, and 14 days by MTT for proliferation study; by SEM and histology for cell interaction study; and by RT-PCR for function-related genes study. In HOBs seeded on membranes, mineralization functions by ALP assay and Alizarin Red staining were also investigated. Results indicated that the tested membranes, especially when hydrated, can promote the proliferation and attachment of cells at each time. Furthermore, membranes significantly increased ALP and mineralization activities in HOBs as well as the osteoblastic-related genes ALP and OCN. Similarly, membranes significantly increased ECM-related and MMP8 gene expression in HGFs. In conclusion, the tested acellular porcine dermis collagen matrix membrane, mainly when it is hydrated, behaved as a suitable microenvironment for oral cells.


Asunto(s)
Dermis Acelular , Técnicas de Cultivo de Célula , Animales , Dermis Acelular/metabolismo , Colágeno/química , Colágeno/farmacología , Fibroblastos/metabolismo , Osteoblastos/metabolismo , Porcinos
19.
J Food Sci Technol ; 60(3): 996-1005, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908340

RESUMEN

The shelf life of dried garlic powder packaged in high-density polyethylene (HDPE), low-density polyethylene (LDPE), and aluminum laminated pouch (ALP) under accelerated storage temperature (5° to 40 °C) and humidity (70-90% RH) conditions, was predicted using GAB mathematical model. The water activity value reduced significantly from 0.83 to 0.31 as the moisture content reduced. The temperature had a negative effect on color change and the lightness value and whiteness index of garlic powder significantly decreased from 62.21 to 56.06 and 50.67 to 44.91 respectively, when temperature increased from 70° to 90° C. The storage life of garlic powder was 24, 78 and 210 days in LDPE, HDPE, and ALP, respectively under domestic storage conditions (40 °C, 90% RH). Therefore, under industrial storage conditions (5 °C, 70% RH), garlic could be preserved for 1.32, 4.30 and 7.28 years in LDPE, HDPE and ALP, respectively.

20.
Calcif Tissue Int ; 111(6): 646-652, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36220940

RESUMEN

Generalised arterial calcification of infancy (GACI) is an ultra-rare life-threatening genetic disorder. Arterial calcification is identified during foetal ultrasound scan (USS) as increased cardiac and/or vascular echogenicity. Inorganic pyrophosphate (PPi) is the main inhibitor of arterial calcification. Pathogenic variants in ENPP1, ABCC6 and NT5E causing low PPi lead to ectopic calcifications. Rheumatoid arthritis (RA) is an acquired condition that can also lead to arterial calcification in adults. We present an extremely rare case of a transient GACI-like condition identified during foetal echocardiogram of an infant born to a mother diagnosed with RA, which spontaneously resolved postnatally. This case highlights that foetal ultrasound scans of pregnant women with RA should be carefully evaluated for cardiovascular calcifications.


Asunto(s)
Pirofosfatasas , Calcificación Vascular , Lactante , Adulto , Humanos , Femenino , Embarazo , Pirofosfatasas/genética , Hidrolasas Diéster Fosfóricas/genética , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/patología , Ecocardiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA