Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(3): 1166-1174, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511164

RESUMEN

The biological definition of Alzheimer's disease using CSF biomarkers requires abnormal levels of both amyloid (A) and tau (T). However, biomarkers and corresponding cutoffs may not always reflect the presence or absence of pathology. Previous studies suggest that up to 32% of individuals with autopsy-confirmed Alzheimer's disease show normal CSF p-tau levels in vivo, but these studies are sparse and had small sample sizes. Therefore, in three independent autopsy cohorts, we studied whether or not CSF A+T- excluded Alzheimer's disease based on autopsy. We included 215 individuals, for whom ante-mortem CSF collection and autopsy had been performed, from three cohorts: (i) the Amsterdam Dementia Cohort (ADC) [n = 80, 37 (46%) Alzheimer's disease at autopsy, time between CSF collection and death 4.5 ± 2.9 years]; (ii) the Antwerp Dementia Cohort (DEM) [n = 92, 84 (91%) Alzheimer's disease at autopsy, time CSF collection to death 1.7 ± 2.3 years]; and (iii) the Alzheimer's Disease Neuroimaging Initiative (ADNI) [n = 43, 31 (72%) Alzheimer's disease at autopsy, time CSF collection to death 5.1 ± 2.5 years]. Biomarker profiles were based on dichotomized CSF Aß1-42 and p-tau levels. The accuracy of CSF AT profiles to detect autopsy-confirmed Alzheimer's disease was assessed. Lastly, we investigated whether the concordance of AT profiles with autopsy diagnosis improved when CSF was collected closer to death in 9 (10%) DEM and 30 (70%) ADNI individuals with repeated CSF measurements available. In total, 50-73% of A+T- individuals and 100% of A+T+ individuals had Alzheimer's disease at autopsy. Amyloid status showed the highest accuracy to detect autopsy-confirmed Alzheimer's disease (accuracy, sensitivity and specificity in the ADC: 88%, 92% and 84%; in the DEM: 87%, 94% and 12%; and in the ADNI cohort: 86%, 90% and 75%, respectively). The addition of CSF p-tau did not further improve these estimates. We observed no differences in demographics or degree of Alzheimer's disease neuropathology between A+T- and A+T+ individuals with autopsy-confirmed Alzheimer's disease. All individuals with repeated CSF measurements remained stable in Aß1-42 status during follow-up. None of the Alzheimer's disease individuals with a normal p-tau status changed to abnormal; however, four (44%) DEM individuals and two (7%) ADNI individuals changed from abnormal to normal p-tau status over time, and all had Alzheimer's disease at autopsy. In summary, we found that up to 73% of A+T- individuals had Alzheimer's disease at autopsy. This should be taken into account in both research and clinical settings.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Proteínas tau , Biomarcadores , Sensibilidad y Especificidad , Fragmentos de Péptidos
2.
Alzheimers Dement ; 19(10): 4729-4734, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37079778

RESUMEN

Evaluating potential therapies for Alzheimer's disease (AD) depends on use of biomarkers for appropriate subject selection and monitoring disease progression. Biomarkers that predict onset of clinical symptoms are particularly important for AD because they enable intervention before irreversible neurodegeneration occurs. The amyloid-ß-tau-neurodegeneration (ATN) classification system is currently used as a biological staging model for AD and is based on three classes of biomarkers evaluating amyloid-ß (Aß), tau pathology and neurodegeneration or neuronal injury. Promising blood-based biomarkers for each of these categories have been identified (Aß42/Aß40 ratio, phosphorylated tau, neurofilament light chain), and this matrix is now being expanded toward an ATN(I) system, where "I" represents a neuroinflammatory biomarker. The plasma ATN(I) system, together with APOE genotyping, offers a basis for individualized evaluation and a move away from the classic "one size fits all" approach toward a biomarker-driven individualisation of therapy for patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Progresión de la Enfermedad , Modelos Biológicos , Proteínas tau
3.
Alzheimers Dement ; 19(8): 3350-3364, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36790009

RESUMEN

INTRODUCTION: This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS: Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS: AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION: This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Multiómica , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
4.
Int J Neurosci ; 132(12): 1245-1253, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33527855

RESUMEN

Objective: Synaptic degeneration is the pathologic foundation of cognitive decline in the Alzheimer's disease (AD) continuum. We aimed to determine whether cerebrospinal fluid (CSF) synaptic marker neurogranin (Ng) is a disease state or a disease stage biomarker in the AD continuum.Methods: Studies comparing CSF Ng levels among AD, mild cognitive impairment (MCI) and healthy participants were included. Studies were eligible if the correlation between CSF Ng levels and Mini-Mental Status Examination (MMSE) scores was investigated.Results: Twenty-one studies met our inclusion criteria (n = 4515). The magnitude of effect sizes was more apparent in AD (standardized mean difference [SMD] = 1.72; 95% confidence interval [CI] = 1.23-2.22), than in MCI (SMD = 0.82; 95% CI = 0.29-1.34) compared to control populations. These results suggest that CSF Ng can discriminate AD and MCI from control populations, implying that synaptic degeneration worsens as patients progress from MCI to AD. However, there was a very weak correlation between CSF Ng levels and MMSE scores (r = -0.15; 95% CI = -0.21--0.08) among the whole populations, suggesting that an increment of CSF Ng is best considered a biological evidence of disease state in the AD continuum.Conclusion: Our study provides evidence that the synaptic marker CSF Ng can be used as a disease state biomarker for the AD continuum. Because synaptic degeneration is a distinct pathologic event from amyloid deposition and neurofibrillary tangle formation, CSF Ng may provide an important supplementation to the AT(N) biomarker system to reveal the sequence of neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Neurogranina/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides , Proteínas tau , Fragmentos de Péptidos
5.
Alzheimers Dement ; 18(8): 1545-1564, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34870885

RESUMEN

Black Americans are disproportionately affected by dementia. To expand our understanding of mechanisms of this disparity, we look to Alzheimer's disease (AD) biomarkers. In this review, we summarize current data, comparing the few studies presenting these findings. Further, we contextualize the data using two influential frameworks: the National Institute on Aging-Alzheimer's Association (NIA-AA) Research Framework and NIA's Health Disparities Research Framework. The NIA-AA Research Framework provides a biological definition of AD that can be measured in vivo. However, current cut-points for determining pathological versus non-pathological status were developed using predominantly White cohorts-a serious limitation. The NIA's Health Disparities Research Framework is used to contextualize findings from studies identifying racial differences in biomarker levels, because studying biomakers in isolation cannot explain or reduce inequities. We offer recommendations to expand study beyond initial reports of racial differences. Specifically, life course experiences associated with racialization and commonly used study enrollment practices may better account for observations than exclusively biological explanations.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Población Negra , Humanos , National Institute on Aging (U.S.) , Estados Unidos , Proteínas tau
6.
Cereb Cortex ; 30(11): 5863-5873, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32537637

RESUMEN

During the progression of Alzheimer's disease (AD), neuropathology may propagate transneuronally, cause disruption in memory circuit, and lead to memory impairment. However, there is a lack of in vivo evidence regarding this process. Thus, we aim to simulate and observe the progression of neuropathology in AD continuum. We included cognitively normal (CN), mild cognitive impairments (MCI), and AD subjects, and further classified them using the A/T/N scheme (Group 0: CN, A - T-; Group 1: CN, A + T-; Group 2: CN, A + T+; Group 3: MCI, A + T+; Group 4: AD, A + T+). We investigated alterations of three core memory circuit structures: hippocampus (HP) subfields volume, cingulum-angular bundles (CAB) fiber integrity, and precuneus cortex volume. HP subfields volume showed the trend of initially increased and then decreased (starting from Group 2), while precuneus volume decreased in Groups 3 and 4. The CAB integrity degenerated in Groups 3 and 4 and aggravated with higher disease stages. Further, memory circuit impairments were correlated with neuropathology biomarkers and memory performance. Conclusively, our results demonstrated a pattern of memory circuit impairments along with AD progression: starting from the HP, then propagating to the downstream projection fiber tract and cortex. These findings support the tau propagation theory to some extent.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Trastornos de la Memoria/patología , Vías Nerviosas/patología , Neuroimagen/métodos , Anciano , Enfermedad de Alzheimer/complicaciones , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Trastornos de la Memoria/etiología , Persona de Mediana Edad
7.
BMC Neurol ; 20(1): 10, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31918679

RESUMEN

BACKGROUND: We investigated the potential associations between cerebro-spinal fluid (CSF) levels of phosphorylated tau (P-tau) and total tau (T-tau) with short-term response to cholinesterase inhibitor (ChEI) treatment, longitudinal outcome and progression rates in Alzheimer's disease (AD). METHODS: This prospective, observational study included 129 participants clinically diagnosed with mild-to-moderate AD, who underwent a lumbar puncture. The CSF biomarkers amyloid-ß1-42 (Aß42), P-tau and T-tau were analysed with xMAP technology. Cognitive, global, instrumental and basic activities of daily living (ADL) capacities at the start of ChEI therapy and semi-annually over 3 years were evaluated. RESULTS: All patients had abnormal Aß42 (A+). Fifty-eight individuals (45%) exhibited normal P-tau and T-tau (A+ T- (N)-), 12 (9%) abnormal P-tau/normal T-tau (A+ T+ (N)-), 17 (13%) normal P-tau/abnormal T-tau (A+ T- (N)+) and 42 (33%) abnormal P-tau and T-tau (A+ T+ (N)+). The participants with A+ T+ (N)+ were younger than A+ T- (N)+ at the estimated onset of AD and the initiation of ChEIs. The proportion of 6-month responders to ChEI and deterioration/year after start of treatment did not differ between the AT(N) profiles in any scales. A higher percentage of globally improved/unchanged patients was exhibited in the A+ T- (N)- group after 12, 30 and 36 months of ChEI therapy but not at other assessments. In apolipoprotein E (APOE) ε4-carriers, linear relationships were found between greater cognitive decline/year and higher tau; Mini-Mental State Examination score - T-tau (rs = - 0.257, p = 0.014) and Alzheimer's Disease Assessment Scale-cognitive subscale - P-tau (rs = - 0.242, p = 0.022). A correlation between faster progression in instrumental ADL (IADL) and higher T-tau was also detected (rs = - 0.232, p = 0.028). These associations were not demonstrated in non-ε4-carriers. CONCLUSIONS: Younger age and faster global deterioration were observed in AD patients with pathologic tau and neurodegeneration, whereas more rapid cognitive and IADL decline were related to higher P-tau or T-tau in APOE ε4-carriers only. The results might indicate an association between more pronounced tau pathology/neuronal injury and the APOE ε4-allele leading to a worse prognosis. Our findings showed that the AT(N) biomarker profiles have limited utility to predict AD progression rates and, thus, measure change and interpreting outcomes from clinical trials of future therapies.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Actividades Cotidianas , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Inhibidores de la Colinesterasa/uso terapéutico , Progresión de la Enfermedad , Femenino , Genotipo , Humanos , Masculino , Fosforilación , Estudios Prospectivos
8.
Alzheimers Dement ; 16(2): 262-272, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31668967

RESUMEN

INTRODUCTION: Synaptic damage, axonal neurodegeneration, and neuroinflammation are common features in Alzheimer's disease (AD), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD). METHODS: Unicentric cohort of 353 participants included healthy control (HC) subjects, AD continuum stages, genetic AD and FTD, and FTD and CJD. We measured cerebrospinal fluid neurofilament light (NF-L), neurogranin (Ng), 14-3-3, and YKL-40 proteins. RESULTS: Biomarkers showed differences in HC subjects versus AD, FTD, and CJD. Disease groups differed between them except AD versus FTD for YKL-40. Only NF-L differed between all stages within the AD continuum. AD and FTD symptomatic mutation carriers presented differences with respect to HC subjects. Applying the AT(N) system, 96% subjects were positive for neurodegeneration if 14-3-3 was used, 94% if NF-L was used, 62% if Ng was used, and 53% if YKL-40 was used. DISCUSSION: Biomarkers of synapse and neurodegeneration differentiate HC subjects from neurodegenerative dementias and between AD, FTD, and CJD. NF-L and 14-3-3 performed similar to total tau when AT(N) system was applied.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Axones/patología , Biomarcadores/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Demencia Frontotemporal/líquido cefalorraquídeo , Inflamación , Anciano , Estudios de Casos y Controles , Proteína 1 Similar a Quitinasa-3/líquido cefalorraquídeo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Neurogranina/líquido cefalorraquídeo
9.
Alzheimers Dement ; 15(10): 1348-1356, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31564609

RESUMEN

The 2018 National Institute on Aging and the Alzheimer's Association (NIA-AA) research framework recently redefined Alzheimer's disease (AD) as a biological construct, based on in vivo biomarkers reflecting key neuropathologic features. Combinations of normal/abnormal levels of three biomarker categories, based on single thresholds, form the AD signature profile that defines the biological disease state as a continuum, independent of clinical symptomatology. While single thresholds may be useful in defining the biological signature profile, we provide evidence that their use in studies with cognitive outcomes merits further consideration. Using data from the Alzheimer's Disease Neuroimaging Initiative with a focus on cortical amyloid binding, we discuss the limitations of applying the biological definition of disease status as a tool to define the increased likelihood of the onset of the Alzheimer's clinical syndrome and the effects that this may have on trial study design. We also suggest potential research objectives going forward and what the related data requirements would be.


Asunto(s)
Enfermedad de Alzheimer/clasificación , Biomarcadores , Encéfalo , Neuropatología , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , National Institute on Aging (U.S.)/normas , Neuroimagen , Estados Unidos
10.
Ageing Res Rev ; 96: 102290, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38580173

RESUMEN

Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-ß (Aß) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aß1-42, the Aß1-42/Aß1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aß1-42/Aß1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Proteínas tau , Estudios Transversales , Péptidos beta-Amiloides , Biomarcadores/líquido cefalorraquídeo
11.
Curr Alzheimer Res ; 20(11): 778-790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425106

RESUMEN

BACKGROUND: Mild Cognitive Impairment (MCI) usually precedes the symptomatic phase of dementia and constitutes a window of opportunities for preventive therapies. OBJECTIVES: The objective of this study was to predict the time an MCI patient has left to reach dementia and obtain the most likely natural history in the progression of MCI towards dementia. METHODS: This study was conducted on 633 MCI patients and 145 subjects with dementia through 4726 visits over 15 years from Alzheimer Disease Neuroimaging Initiative (ADNI) cohort. A combination of data from AT(N) profiles at baseline and longitudinal predictive modeling was applied. A data-driven approach was proposed for categorical diagnosis prediction and timeline estimation of cognitive decline progression, which combined supervised and unsupervised learning techniques. RESULTS: A reduced vector of only neuropsychological measures was selected for training the models. At baseline, this approach had high performance in detecting subjects at high risk of converting from MCI to dementia in the coming years. Furthermore, a Disease Progression Model (DPM) was built and also verified using three metrics. As a result of the DPM focused on the studied population, it was inferred that amyloid pathology (A+) appears about 7 years before dementia, and tau pathology (T+) and neurodegeneration (N+) occur almost simultaneously, between 3 and 4 years before dementia. In addition, MCI-A+ subjects were shown to progress more rapidly to dementia compared to MCI-A- subjects. CONCLUSION: Based on proposed natural histories and cross-sectional and longitudinal analysis of AD markers, the results indicated that only a single cerebrospinal fluid sample is necessary during the prodromal phase of AD. Prediction from MCI into dementia and its timeline can be achieved exclusively through neuropsychological measures.


Asunto(s)
Disfunción Cognitiva , Demencia , Progresión de la Enfermedad , Pruebas Neuropsicológicas , Humanos , Disfunción Cognitiva/diagnóstico , Anciano , Masculino , Femenino , Demencia/diagnóstico , Estudios Longitudinales , Anciano de 80 o más Años , Neuroimagen , Estudios de Cohortes
12.
Alzheimers Dement (Amst) ; 16(2): e12589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666085

RESUMEN

INTRODUCTION: Soluble amyloid beta (Aß) oligomers have been suggested as initiating Aß related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS: A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aß and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS: Across groups, highest Aß oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aß oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE Îµ4 allele carriers showed significantly higher Aß oligomer levels. No differences in tau oligomers were detected. DISCUSSION: The accumulation of Aß oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aß oligomers might have the highest therapeutic effect in these disease stages. Highlights: Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aß oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAß oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aß oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.

13.
J Alzheimers Dis ; 100(4): 1333-1343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39093070

RESUMEN

Background: The relationship between Alzheimer's disease (AD)-related pathology and cognition was not exactly consistent. Objective: To explore whether the association between AD pathology and cognition can be moderated by frailty. Methods: We included 1711 participants from the Alzheimer's Disease Neuroimaging Initiative database. Levels of cerebrospinal fluid amyloid-ß, p-tau, and t-tau were identified for AD-related pathology based on the amyloid-ß/tau/neurodegeneration (AT[N]) framework. Frailty was measured using a modified Frailty Index-11 (mFI-11). Regression and interaction models were utilized to assess the relationship among frailty, AT(N) profiles, and cognition. Moderation models analyzed the correlation between AT(N) profiles and cognition across three frailty levels. All analyses were corrected for age, sex, education, and APOEɛ4 status. Results: In this study, frailty (odds ratio [OR] = 1.71, p < 0.001) and AT(N) profiles (OR = 2.00, p < 0.001) were independently associated with cognitive status. The model fit was improved when frailty was added to the model examining the relationship between AT(N) profiles and cognition (p < 0.001). There was a significant interaction between frailty and AT(N) profiles in relation to cognitive status (OR = 1.12, pinteraction = 0.028). Comparable results were obtained when Mini-Mental State Examination scores were utilized as the measure of cognitive performance. The association between AT(N) profiles and cognition was stronger with the levels of frailty. Conclusions: Frailty may diminish patients' resilience to AD pathology and accelerate cognitive decline resulting from abnormal AD-related pathology. In summary, frailty contributes to elucidating the relationship between AD-related pathology and cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Cognición , Fragilidad , Proteínas tau , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/complicaciones , Masculino , Femenino , Anciano , Fragilidad/complicaciones , Fragilidad/psicología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Cognición/fisiología , Proteínas tau/líquido cefalorraquídeo , Anciano de 80 o más Años , Pruebas Neuropsicológicas , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/psicología
14.
Appl Neuropsychol Adult ; : 1-8, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140183

RESUMEN

INTRODUCTION: Memory deficits are the primary symptom in amnestic Mild Cognitive Impairment (aMCI); however, executive function (EF) deficits are common. The current study examined EF in aMCI based upon amyloid status (A+/A-) and regional atrophy in signature areas of Alzheimer's disease (AD). METHOD: Participants included 110 individuals with aMCI (A+ = 66; A- = 44) and 33 cognitively healthy participants (HP). EF was assessed using four neuropsychological assessment measures. The cortical thickness of the AD signature areas was calculated using structural MRI data. RESULTS: A + had greater EF deficits and cortical atrophy relative to A - in the supramarginal gyrus and superior parietal lobule. A - had greater EF deficits relative to HP, but no difference in signature area cortical thickness. DISCUSSION: The current study found that the degree of EF deficits in aMCI are a function of amyloid status and cortical thinning in the parietal cortex.

15.
Front Neurosci ; 17: 1076177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908784

RESUMEN

Background: Optical coherence tomography angiography (OCT-A) is a novel method in the dementia field that allows the detection of retinal vascular changes. The comparison of OCT-A measures with established Alzheimer's disease (AD)-related biomarkers is essential to validate the former as a marker of cerebrovascular impairment in the AD continuum. We aimed to investigate the association of macular vessel density (VD) in the superficial plexus quantified by OCT-A with the AT(N) classification based on cerebrospinal fluid (CSF) Aß1-42, p181-tau and t-tau measurements in individuals with mild cognitive impairment (MCI). Materials and methods: Clinical, demographic, ophthalmological, OCT-A and CSF core biomarkers for AD data from the Neuro-ophthalmology Research at Fundació ACE (NORFACE) project were analyzed. Differences in macular VD in four quadrants (superior, nasal, inferior, and temporal) among three AT(N) groups [Normal, Alzheimer and Suspected non-Alzheimer pathology (SNAP)] were assessed in a multivariate regression model, adjusted for age, APOE ε4 status, hypertension, diabetes mellitus, dyslipidemia, heart disease, chronic obstructive pulmonary disease and smoking habit, using the Normal AT(N) group as the reference category. Results: The study cohort comprised 144 MCI participants: 66 Normal AT(N), 45 Alzheimer AT(N) and 33 SNAP AT(N). Regression analysis showed no significant association of the AT(N) groups with any of the regional macular VD measures (all, p > 0.16). The interaction between sex and AT(N) groups had no effect on differentiating VD. Lastly, CSF Aß1-42, p181-tau and t-tau measures were not correlated to VD (all r < 0.13; p > 0.13). Discussion: Our study showed that macular VD measures were not associated with the AT(N) classification based on CSF biomarkers in patients with MCI, and did not differ between AD and other underlying causes of cognitive decline in our cohort.

16.
Alzheimers Dement (Amst) ; 15(3): e12465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600860

RESUMEN

Fluid biomarkers are currently measured in cerebrospinal fluid and blood for Alzheimer's disease diagnosis and are promising targets for drug development and for patients' follow-up in clinical trials. These biomarkers have been grouped in an unbiased research framework, the amyloid (Aß), tau, and neurodegeneration (AT[N]) biomarker system to aid patients' early diagnosis and stratification. Metrological approaches relying on mass spectrometry have been used for the development of reference materials and reference measurement procedures. Despite their excellent performances as clinical tools, fluid biomarkers often present an important between-laboratory variation. Standardization efforts were carried out on the biomarkers currently included in the AT(N) classification system, involving the collaboration of national metrology institutes, clinicians, researchers, and in vitro diagnostic providers. This article provides an overview of current activities towards standardization. These reference methods and reference materials may be used for recalibration of immunoassays and the establishment of standardized cutoff values allowing a better stratification of Alzheimer's disease patients. Highlights: The AT(N) biomarker system allows stratifying AD patients on the basis of biomarker profiles.Fluid biomarker measurements often present an important between-laboratory variation preventing the establishment of standardized cutoff values.Overview on the standardization initiatives involving the fluid biomarkers currently included in the AT(N) framework.

17.
Neurobiol Aging ; 127: 23-32, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37030016

RESUMEN

We aimed to assess the utility of AT(N) classification in clinical practice. We measured the cerebrospinal fluid levels of amyloid-ß (Aß) 42, Aß40, phosphorylated tau, total tau, and neurofilament light chain (NfL) in samples from 230 patients with Alzheimer's clinical syndrome (ACS) and 328 patients with non-ACS. The concordance of two A-markers (i.e., Aß42 alone and the Aß42/Aß40 ratio) was not significantly different between the ACS (87.4%) and non-ACS (74.1%) groups. However, the frequency of discordant cases with AAß42-alone+/AAß-ratio- was significantly higher in the non-ACS (23.8%) than in the ACS group (7.4%). The concordance of two N-markers (i.e., total tau and NfL) was 40.4% in the ACS group and 24.4% in the non-ACS group. In the ACS samples, the frequency of biological Alzheimer's disease (i.e., A+T+) in Ntau+ cases was 95% while that in NNfL+ cases was 65%. Reflecting Aß deposition and neurodegeneration more accurately, we recommend the use of AT(N) classification defined by cerebrospinal fluid AAß-ratioTNNfL in clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Síndrome , Fragmentos de Péptidos/líquido cefalorraquídeo
18.
J Alzheimers Dis ; 95(3): 1201-1219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37661878

RESUMEN

BACKGROUND: Despite the striking efforts in investigating neurobiological factors behind the acquisition of amyloid-ß (A), protein tau (T), and neurodegeneration ([N]) biomarkers, the mechanistic pathways of how AT[N] biomarkers spreading throughout the brain remain elusive. OBJECTIVE: To disentangle the massive heterogeneities in Alzheimer's disease (AD) progressions and identify vulnerable/critical brain regions to AD pathology. METHODS: In this work, we characterized the interaction of AT[N] biomarkers and their propagation across brain networks using a novel bistable reaction-diffusion model, which allows us to establish a new systems biology underpinning of AD progression. We applied our model to large-scale longitudinal neuroimages from the ADNI database and studied the systematic vulnerability and criticality of brains. RESULTS: Our model yields long term prediction that is statistically significant linear correlated with temporal imaging data, produces clinically consistent risk prediction, and captures the Braak-like spreading pattern of AT[N] biomarkers in AD development. CONCLUSIONS: Our major findings include (i) tau is a stronger indicator of regional risk compared to amyloid, (ii) temporal lobe exhibits higher vulnerability to AD-related pathologies, (iii) proposed critical brain regions outperform hub nodes in transmitting disease factors across the brain, and (iv) comparing the spread of neuropathological burdens caused by amyloid-ß and tau diffusions, disruption of metabolic balance is the most determinant factor contributing to the initiation and progression of AD.

19.
Alzheimers Res Ther ; 14(1): 16, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073974

RESUMEN

BACKGROUND: The progression rates of Alzheimer's disease (AD) are variable and dynamic, yet the mechanisms that contribute to heterogeneity in progression rates remain ill-understood. Particularly, the role of synergies in pathological processes reflected by biomarkers for amyloid-beta ('A'), tau ('T'), and neurodegeneration ('N') in progression along the AD continuum is not fully understood. METHODS: Here, we used a combination of model and data-driven approaches to address this question. Working with a large dataset (N = 321 across the training and testing cohorts), we first applied unsupervised clustering on longitudinal cognitive assessments to divide individuals on the AD continuum into those showing fast vs. moderate decline. Next, we developed a deep learning model that differentiated fast vs. moderate decline using baseline AT(N) biomarkers. RESULTS: Training the model with AT(N) biomarker combination revealed more prognostic utility than any individual biomarkers alone. We additionally found little overlap between the model-driven progression phenotypes and established atrophy-based AD subtypes. Our model showed that the combination of all AT(N) biomarkers had the most prognostic utility in predicting progression along the AD continuum. A comprehensive AT(N) model showed better predictive performance than biomarker pairs (A(N) and T(N)) and individual biomarkers (A, T, or N). CONCLUSIONS: This study combined data and model-driven methods to uncover the role of AT(N) biomarker synergies in the progression of cognitive decline along the AD continuum. The results suggest a synergistic relationship between AT(N) biomarkers in determining this progression, extending previous evidence of A-T synergistic mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Simulación por Computador , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico , Aprendizaje Profundo , Progresión de la Enfermedad , Humanos , Proteínas tau/metabolismo
20.
J Alzheimers Dis Rep ; 6(1): 699-710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36606209

RESUMEN

Alzheimer's disease (AD) poses a substantial healthcare burden in the rapidly aging Asian population. Early diagnosis of AD, by means of biomarkers, can lead to interventions that might alter the course of the disease. The amyloid, tau, and neurodegeneration (AT[N]) framework, which classifies biomarkers by their core pathophysiological features, is a biomarker measure of amyloid plaques and neurofibrillary tangles. Our current AD biomarker armamentarium, comprising neuroimaging biomarkers and cerebrospinal fluid biomarkers, while clinically useful, may be invasive and expensive and hence not readily available to patients. Several studies have also investigated the use of blood-based measures of established core markers for detection of AD, such as amyloid-ß and phosphorylated tau. Furthermore, novel non-invasive peripheral biomarkers and digital biomarkers could potentially expand access to early AD diagnosis to patients in Asia. Despite the multiplicity of established and potential biomarkers in AD, a regional framework for their optimal use to guide early AD diagnosis remains lacking. A group of experts from five regions in Asia gathered at a meeting in March 2021 to review the current evidence on biomarkers in AD diagnosis and discuss best practice around their use, with the goal of developing practical guidance that can be implemented easily by clinicians in Asia to support the early diagnosis of AD. This article summarizes recent key evidence on AD biomarkers and consolidates the experts' insights into the current and future use of these biomarkers for the screening and early diagnosis of AD in Asia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA