Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(6): 1760-1773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38446797

RESUMEN

Histone 2B ubiquitination (H2Bub) and trimethylation of H3 at lysine 4 (H3K4me3) are associated with transcription activation. However, the function of these modifications in transcription in plants remains largely unknown. Here, we report that coordination of H2Bub and H3K4me3 deposition with the binding of the RNA polymerase-associated factor VERNALIZATION INDEPENDENCE2 (VIP2) to FLOWERING LOCUS C (FLC) modulates flowering time in Arabidopsis. We found that RING domain protein HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 (we refer as HUB1/2), which are responsible for H2Bub, interact with ARABIDOPSIS TRITHORAX1 (ATX1), which is required for H3K4me3 deposition, to promote the transcription of FLC and repress the flowering time. The atx1-2 hub1-10 hub2-2 triple mutant in FRIGIDIA (FRI) background displayed early flowering like FRI hub1-10 hub2-2 and overexpression of ATX1 failed to rescue the early flowering phenotype of hub1-10 hub2-2. Mutations in HUB1 and HUB2 reduced the ATX1 enrichment at FLC, indicating that HUB1 and HUB2 are required for ATX1 recruitment and H3K4me3 deposition at FLC. We also found that the VIP2 directly binds to HUB1, HUB2, and ATX1 and that loss of VIP2 in FRI hub1-10 hub2-2 and FRI atx1-2 plants resulted in early flowering like that observed in FRI vip2-10. Loss of function of HUB2 and ATX1 impaired VIP2 enrichment at FLC, and reduced the transcription initiation and elongation of FLC. In addition, mutations in VIP2 reduced HUB1 and ATX1 enrichment and H2Bub and H3K4me3 levels at FLC. Together, our findings revealed that HUB1/2, ATX1, and VIP2 coordinately modulate H2Bub and H3K4me3 deposition, FLC transcription, and flowering time.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Histonas , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Flores/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
2.
Plant J ; 118(2): 549-564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184780

RESUMEN

Epigenetic regulation of gene expression plays a crucial role in plant development and environmental adaptation. The H3K4me3 and H3K27me3 have not only been discovered in the regulation of gene expression in multiple biological processes but also in responses to abiotic stresses in plants. However, evidence for the presence of both H3K4me3 and H3K27me3 on the same nucleosome is sporadic. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modifications and nucleosome depletion over a considerable number of active genes is documented in potato tubers and provides clues on an additional role of the bivalent modifications. Limited by the available information of genes encoding PcG/TrxG proteins as well as their corresponding mutants in potatoes, the molecular mechanism underlying the cold-induced deposition of the bivalent mark remains elusive. In this study, we found a similar deposition of the bivalent H3K4me3-H3K27me3 mark over 2129 active genes in cold-treated Arabidopsis Col-0 seedlings. The expression levels of the bivalent mark-associated genes tend to be independent of bivalent modification levels. However, these genes were associated with greater chromatin accessibility, presumably to provide a distinct chromatin environment for gene expression. In mutants clf28 and lhp1, failure to deposit H3K27me3 in active genes upon cold treatment implies that the CLF is potentially involved in cold-induced deposition of H3K27me3, with assistance from LHP1. Failure to deposit H3K4me3 during cold treatment in atx1-2 suggests a regulatory role of ATX1 in the deposition of H3K4me3. In addition, we observed a cold-induced global reduction in nucleosome occupancy, which is potentially mediated by LHP1 in an H3K27me3-dependent manner.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Epigénesis Genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
3.
Mov Disord ; 39(5): 887-892, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38469933

RESUMEN

BACKGROUND: Biallelic pathogenic variants in the ANO10 gene cause autosomal recessive progressive ataxia (ATX-ANO10). METHODS: Following the MDSGene protocol, we systematically investigated genotype-phenotype relationships in ATX-ANO10 based on the clinical and genetic data from 82 published and 12 newly identified patients. RESULTS: Most patients (>80%) had loss-of-function (LOF) variants. The most common variant was c.1150_1151del, found in all 29 patients of Romani ancestry, who had a 14-year earlier mean age at onset than patients homozygous for other LOF variants. We identified previously undescribed clinical features of ATX-ANO10 (e.g., facial muscle involvement and strabismus) suggesting the involvement of brainstem pathology, and we propose a diagnostic algorithm that may aid clinical ATX-ANO10 diagnosis. CONCLUSIONS: The early disease onset in patients with c.1150_1151del may indicate the existence of genetic/environmental disease-modifying factors in the Romani population. Our findings will inform patient counseling and may improve our understanding of the disease mechanism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Anoctaminas , Ataxias Espinocerebelosas , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Edad de Inicio , Anoctaminas/genética , Estudios de Asociación Genética , Ataxias Espinocerebelosas/genética , Anciano
4.
Mol Pharm ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186477

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by unpredictable progression and limited therapeutic options. Current diagnosis relies on high resolution computed tomography (HRCT), which may not adequately capture early signs of deterioration. The enzyme autotaxin (ATX) emerges as a prominently expressed extracellular secretory enzyme in the lungs of IPF patients. The objective of this study was to evaluate the effectiveness of 18F-labeled ATX-targeted tracer [18F]ATX-1905, in comparison with [18F]FDG, for early fibrosis diagnosis, disease evolution monitoring, and treatment efficacy assessment in bleomycin-induced pulmonary fibrosis (BPF) models. To assess treatment efficacy, mice were treated with two commonly used drugs for IPF, pirfenidone or nintedanib, from Day 9 to Day 23 postbleomycin administration. Lung tissue assessments encompassed inflammation severity via H&E staining, and Ashcroft scoring via Masson staining, alongside quantification of ATX expression through ELISA. Positron emission tomography (PET) imaging employing [18F]FDG and [18F]ATX-1905 tracked disease progression pre- and post-treatment. The extent of pulmonary fibrosis corresponded to changes in ATX expression levels in the BPF mouse model. Notably, [18F]ATX-1905 exhibited elevated uptake in BPF lungs during the progression of the disease, particularly evident at the early stage (Day 9). This uptake was inhibited by an ATX inhibitor, PF-8380, underscoring the specificity of the radiotracer. Conversely, [18F]FDG uptake, peaking at Day 15, decreased subsequently, likely reflective of diminished inflammation. A 2-week treatment regimen using either pirfenidone or nintedanib resulted in notable reductions of ATX expression levels and fibrosis degrees within lung tissues, based on ELISA and Masson staining, as evidenced by PET imaging with [18F]ATX-1905. [18F]FDG uptake also decreased following the treatment period. Additionally, PET/CT imaging extended to a nonhuman primate (NHP) BPF model. The uptake of [18F]ATX-1905 (SUVmax = 2.2) was significantly higher than that of [18F]FDG (SUVmax = 0.7) in fibrotic lung tissue. Using our novel ATX-specific radiotracer [18F]ATX-1905 and PET/CT imaging, we demonstrated excellent ability in early fibrosis detection, disease monitoring, and treatment assessment within lungs of the BPF mouse models. [18F]ATX-1905 displayed remarkable specificity for ATX expression and high sensitivity for ATX alterations, suggesting its potential for monitoring varying ATX expression in lungs of IPF patients.

5.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39062979

RESUMEN

Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.


Asunto(s)
Lisofosfolípidos , Neoplasias , Hidrolasas Diéster Fosfóricas , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Lisofosfolípidos/metabolismo , Animales , Transducción de Señal , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
6.
Bioorg Med Chem ; 90: 117374, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354726

RESUMEN

The autoglobulin gene is the main enzyme for circulating LPA production and has lysophosphatidylcholine D activity, which catalyzes the production of lysophosphatidic acid and choline with lysophosphatidylcholine as substrate. A growing body of experimental evidence suggests that autoglobulin is involved in the pathogenesis of a variety of diseases. This review summarizes the different structural ATX inhibitors classified according to their binding mode to the ATX triple orientation site, and summarizes the conformational relationships and molecular docking of each type with ATX structure, hoping to contribute to the development of novel ATX inhibitors.


Asunto(s)
Lisofosfatidilcolinas , Hidrolasas Diéster Fosfóricas , Hidrolasas Diéster Fosfóricas/metabolismo , Lisofosfatidilcolinas/metabolismo , Simulación del Acoplamiento Molecular , Lisofosfolípidos/metabolismo
7.
J Pharmacol Sci ; 153(3): 175-182, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770159

RESUMEN

We previously found that pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP-/-) mice exhibit dendritic spine morphology impairment and neurodevelopmental disorder (NDD)-like behaviors such as hyperactivity, increased novelty-seeking behavior, and deficient pre-pulse inhibition. Recent studies have indicated that rodent models of NDDs (e.g., attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder) show abnormalities in the axon initial segment (AIS). Here, we revealed that PACAP-/- mice exhibited a longer AIS length in layer 2/3 pyramidal neurons of the primary somatosensory barrel field compared with wild-type control mice. Further, we previously showed that a single injection of atomoxetine, an ADHD drug, improved hyperactivity in PACAP-/- mice. In this study, we found that repeated treatments of atomoxetine significantly improved AIS abnormality along with hyperactivity in PACAP-/- mice. These results suggest that AIS abnormalities are associated with NDDs-like behaviors in PACAP-/- mice. Thus, improvement in AIS abnormalities will be a novel drug therapy for NDDs.

8.
Plant J ; 105(5): 1326-1338, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33278042

RESUMEN

Plants have short-term stress memory that enables them to maintain the expression state of a substantial subset of heat-inducible genes during stress recovery after heat stress. Little is known about the molecular mechanisms controlling stress-responsive gene expression at the recovery stage in plants, however. In this article, we demonstrate that histone H3K4 methyltransferases SDG25 and ATX1 are required for heat-stress tolerance in Arabidopsis. SDG25 and ATX1 are not only important for stress-responsive gene expression during heat stress, but also for maintaining stress-responsive gene expression during stress recovery. A combination of whole-genome bisulfite sequencing, RNA-sequencing and ChIP-qPCR demonstrated that mutations of SDG25 and ATX1 decrease histone H3K4me3 levels, increase DNA cytosine methylation and inhibit the expression of a subset of heat stress-responsive genes during stress recovery in Arabidopsis. ChIP-qPCR results confirm that ATX1 binds to chromatins associated with these target genes. Our results reveal that histone H3K4me3 affects DNA methylation at regions in the loci associated with heat stress-responsive gene expression during stress recovery, providing insights into heat-stress transcriptional memory in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Histona Metiltransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Histona Metiltransferasas/genética
9.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30150325

RESUMEN

Post-translational modification of proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc) is catalyzed by O-GlcNAc transferases (OGTs). O-GlcNAc modification of proteins regulates multiple important biological processes in metazoans. However, whether protein O-GlcNAcylation is involved in epigenetic processes during plant development is largely unknown. Here, we show that loss of function of SECRET AGENT (SEC), an OGT in Arabidopsis, leads to an early flowering phenotype. This results from reduced histone H3 lysine 4 trimethylation (H3K4me3) of FLOWERING LOCUS C (FLC) locus, which encodes a key negative regulator of flowering. SEC activates ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), a histone lysine methyltransferase (HKMT), through O-GlcNAc modification to augment ATX1-mediated H3K4me3 histone modification at FLC locus. SEC transfers an O-GlcNAc group on Ser947 of ATX1, which resides in the SET domain, thereby activating ATX1. Taken together, these results uncover a novel post-translational O-GlcNAc modification-mediated mechanism for regulation of HKMT activity and establish the function of O-GlcNAc signaling in epigenetic processes in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Glicosilación , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina , Histonas/genética , Histonas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Metilación , N-Acetilglucosaminiltransferasas/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética
10.
J Cell Sci ; 133(10)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32265270

RESUMEN

Stressed cells downregulate translation initiation and assemble membrane-less foci termed stress granules (SGs). Although SGs have been extensively characterized in cultured cells, the existence of such structures in stressed adult stem cell pools remains poorly characterized. Here, we report that the Drosophila orthologs of the mammalian SG components AGO1, ATX2, CAPRIN, eIF4E, FMRP, G3BP, LIN-28, PABP and TIAR are enriched in adult fly intestinal progenitor cells, where they accumulate in small cytoplasmic messenger ribonucleoprotein complexes (mRNPs). Treatment with sodium arsenite or rapamycin reorganized these mRNPs into large cytoplasmic granules. Formation of these intestinal progenitor stress granules (IPSGs) depended on polysome disassembly, led to translational downregulation and was reversible. Although the canonical SG nucleators ATX2 and G3BP were sufficient for IPSG formation in the absence of stress, neither of them, nor TIAR, either individually or collectively, were required for stress-induced IPSG formation. This work therefore finds that IPSGs do not assemble via a canonical mechanism, raising the possibility that other stem cell populations employ a similar stress-response mechanism.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proteínas Argonautas , Línea Celular , Células Cultivadas , Gránulos Citoplasmáticos , Proteínas de Drosophila/genética , Polirribosomas , Proteínas de Unión al ARN
11.
Bioorg Chem ; 120: 105590, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34998121

RESUMEN

Aiming to develop novel allosteric autotaxin (ATX) inhibitors, hybrid strategy was utilized by assembling the benzyl carbamate fragment in PF-8380 onto the imidazo[1,2-a]pyridine skeleton of GLPG-1690. The piperazine moiety in GLPG-1690 was replaced with phenyl ring to enhance the π-π interactions with adjacent residues. In the light of FS-3 based ATX enzymatic assay, further structure-guided optimizations were implemented by exploring the substituents within the carbamate aromatic moiety and examining the effect of the 2-ethyl. Eventually, 13c bearing 1,3-benzodioxole and 2-hydroxyethyl piperazine group was identified as a powerful ATX inhibitor with an IC50 value of 2.7 nM. Subsequently, 13c was forwarded into an in vivo bleomycin-induced mice lung fibrosis model. In histopathological and immunohistochemical assays, 13c could typically alleviate the severity of fibrosis tissues and effectively reduce the deposition of fibrotic biomarker α-SMA. At a dose of 60 mg/kg, 13c was observed equivalent or even better potency than GLPG-1690 with a significant inhibition of the in vivo ATX activity. Except for the fundamental H-bond and π-π interactions, an extra H-bond between the 1,3-benzodioxole (O atom) and Phe306 offered great rationale in constraining the binding conformation of 13c. Finally, binding free energy calculation was conducted to assist in the efficient identification of allosteric ATX inhibitors.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Piridinas , Animales , Carbamatos , Modelos Animales de Enfermedad , Fibrosis , Pulmón , Ratones , Hidrolasas Diéster Fosfóricas/metabolismo , Piperazinas , Piridinas/química , Piridinas/farmacología , Piridinas/uso terapéutico , Relación Estructura-Actividad
12.
Cell Mol Life Sci ; 78(4): 1709-1727, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32734582

RESUMEN

Abdominal aortic aneurysm (AAA) is characterized by inflammatory cell infiltration and aggravated by hyperhomocysteinemia (HHcy). It is unknown whether the homocysteine (Hcy)-activated RNA methyltransferase NOP2/Sun domain family member 2 (NSun2) is associated with AAA. Here, we found that NSun2 deficiency significantly attenuated elastase-induced and HHcy-aggravated murine AAA with decreased T cell infiltration in the vessel walls. T cell labeling and adoptive transfer experiments confirmed that NSun2 deficiency inhibited the chemotaxis of vessels to T cells. RNA sequencing of endothelial cells showed that Hcy induced the accumulation of various metabolic enzymes of the phospholipid PC-LPC-LPA metabolic pathway, especially autotaxin (ATX). In the elastase-induced mouse model of AAA, ATX was specifically expressed in the endothelium and the plasma ATX concentration was upregulated and even higher in the HHcy group, which were decreased dramatically by NSun2 knockdown. In vitro Transwell experiments showed that ATX dose-dependently promoted T cell migration. HHcy may upregulate endothelial ATX expression and secretion and in turn recruit T cells into the vessel walls to induce vascular inflammation and consequently accelerate the pathogenesis of AAA. Mechanistically, secreted ATX interacted with T cells by binding to integrin α4, which subsequently activated downstream FAK/Src-RhoA signaling pathways and then induced T cell chemokinesis and adhesion. ATX overexpression in the vessel walls reversed the inhibited development of AAA in the NSun2-deficient mice. Therefore, NSun2 mediates the development of HHcy-aggravated AAA primarily by increasing endothelial ATX expression, secretion and T cell migration, which is a novel mechanism for HHcy-aggravated vascular inflammation and pathogenesis of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/genética , Hiperhomocisteinemia/genética , Inflamación/genética , Metiltransferasas/genética , Hidrolasas Diéster Fosfóricas/genética , Animales , Aneurisma de la Aorta Abdominal/complicaciones , Aneurisma de la Aorta Abdominal/inmunología , Aneurisma de la Aorta Abdominal/patología , Movimiento Celular/genética , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/patología , Inflamación/complicaciones , Inflamación/patología , Ratones , Transducción de Señal/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo
13.
Biomed Chromatogr ; 36(4): e5301, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34928514

RESUMEN

3,4-Difluorobenzyl(1-ethyl-5-(4-((4-hydroxypiperidin-1-yl)-methyl)thiazol-2-yl)-1H-indol-3-yl)carbamate (NAI59), a small molecule with outstanding therapeutic effectiveness to anti-pulmonary fibrosis, was developed as an autotaxin inhibitor candidate compound. To evaluate the pharmacokinetics and plasma protein binding of NAI59, a UPLC-MS/MS method was developed to quantify NAI59 in plasma and phosphate-buffered saline. The calibration curve linearity ranged from 9.95 to 1990.00 ng/mL in plasma. The accuracy was -6.8 to 5.9%, and the intra- and inter-day precision was within 15%. The matrix effect and recovery, as well as dilution integrity, were within the criteria. The chromatographic and mass spectrometric conditions were also feasible to determine phosphate-buffered saline samples, and it has been proved that this method exhibits good precision and accuracy in the range of 9.95-497.50 ng/mL in phosphate-buffered saline. This study is the first to determine the pharmacokinetics, absolute bioavailability, and plasma protein binding of NAI59 in rats using this established method. Therefore, the pharmacokinetic profiles of NAI59 showed a dose-dependent relationship after oral administration, and the absolute bioavailability in rats was 6.3%. In addition, the results of protein binding showed that the combining capacity of NAI59 with plasma protein attained 90% and increased with the increase in drug concentration.


Asunto(s)
Espectrometría de Masas en Tándem , Animales , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Ratas , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
14.
Arch Pharm (Weinheim) ; 355(10): e2200171, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35661405

RESUMEN

In recent years, small-molecule inhibitors targeting the autotaxin (ATX)/lysophosphatidic acid axis gradually brought excellent disease management benefits. Herein, a series of imidazo[1,2-a]pyridine compounds (1-11) were designed as ATX inhibitors through a hybrid strategy by combining the imidazo[1,2-a]pyridine skeleton in GLPG1690 and the benzyl carbamate moiety in PF-8380. As indicated by FS-3-based enzymatic assay, the carbamate derivatives revealed moderate to satisfying ATX inhibitory potency (IC50 = 23-343 nM). Subsequently, the carbamate linker was altered to a urea moiety (12-19) with the aim of retaining ATX inhibition and improving the druglikeness profile. The binding mode analysis all over the modification process well rationalized the leading activity of urea derivatives in an enzymatic assay. Following further structural optimization, the diethanolamine derivative 19 exerted an amazing inhibitory activity (IC50 = 3.98 nM) similar to the positive control GLPG1690 (IC50 = 3.72 nM) and PF-8380 (IC50 = 4.23 nM). Accordingly, 19 was tested directly for in vivo antifibrotic effects through a bleomycin model (H&E staining), in which 19 effectively alleviated lung structural damage and fibrosis at an oral dose of 20 and 60 mg/kg. Collectively, 19 qualified as a promising ATX inhibitor for potential application in fibrosis-relevant disease treatment.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Piridinas , Bleomicina , Carbamatos , Fibrosis , Humanos , Piridinas/química , Piridinas/farmacología , Relación Estructura-Actividad , Urea
15.
Molecules ; 27(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080255

RESUMEN

The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous selective ATX or LPAR1 inhibitors have been developed and so far, their clinical efficacy has only been evaluated in idiopathic pulmonary fibrosis. None of the ATX and LPAR1 inhibitors have advanced to clinical trials for cancer and rheumatoid arthritis. Nonetheless, several research groups, including ours, have shown considerable benefit of simultaneous ATX and LPAR1 inhibition through combination therapy. Recent research suggests that dual-targeting therapies are superior to combination therapies that use two selective inhibitors. However, limited reports are available on ATX-LPAR1 dual inhibitors, potentially due to co-expression of multiple different LPARs with close structural similarities at the same target. In this review, we discuss rational design and future directions of dual ATX-LPAR1 inhibitors.


Asunto(s)
Artritis Reumatoide , Fibrosis Pulmonar Idiopática , Neoplasias , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo
16.
Traffic ; 20(6): 436-447, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30989774

RESUMEN

Ataxin-2, a conserved RNA-binding protein, is implicated in the late-onset neurodegenerative disease Spinocerebellar ataxia type-2 (SCA2). SCA2 is characterized by shrunken dendritic arbors and torpedo-like axons within the Purkinje neurons of the cerebellum. Torpedo-like axons have been described to contain displaced endoplasmic reticulum (ER) in the periphery of the cell; however, the role of Ataxin-2 in mediating ER function in SCA2 is unclear. We utilized the Caenorhabditis elegans and Drosophila homologs of Ataxin-2 (ATX-2 and DAtx2, respectively) to determine the role of Ataxin-2 in ER function and dynamics in embryos and neurons. Loss of ATX-2 and DAtx2 resulted in collapse of the ER in dividing embryonic cells and germline, and ultrastructure analysis revealed unique spherical stacks of ER in mature oocytes and fragmented and truncated ER tubules in the embryo. ATX-2 and DAtx2 reside in puncta adjacent to the ER in both C. elegans and Drosophila embryos. Lastly, depletion of DAtx2 in cultured Drosophila neurons recapitulated the shrunken dendritic arbor phenotype of SCA2. ER morphology and dynamics were severely disrupted in these neurons. Taken together, we provide evidence that Ataxin-2 plays an evolutionary conserved role in ER dynamics and morphology in C. elegans and Drosophila embryos during development and in fly neurons, suggesting a possible SCA2 disease mechanism.


Asunto(s)
Ataxina-2/metabolismo , Transporte Axonal , Retículo Endoplásmico/metabolismo , Evolución Molecular , Proyección Neuronal , Animales , Caenorhabditis elegans , Células Cultivadas , Drosophila melanogaster , Retículo Endoplásmico/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura
17.
J Proteome Res ; 20(12): 5347-5358, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34761935

RESUMEN

The tumor suppressor p53-like protein p63 is required for self-renewal of epidermal tissues. Loss of p63 or exposure to ultraviolet (UV) irradiation triggers terminal differentiation in keratinocytes. However, it remains unclear how p63 diverts epidermal cells from proliferation to terminal differentiation, thereby contributing to successful tissue self-renewal. Here, we used bottom-up proteomics to identify the proteome at the chromatin in normal human epidermal keratinocytes following UV irradiation and p63 depletion. We found that loss of p63 increased DNA damage and that UV irradiation recruited the cyclin-dependent kinase CDK12 and the serine/threonine protein kinase SMG1 to chromatin only in the presence of p63. A post-translational modification analysis of ΔNp63α with mass spectrometry revealed that phosphorylation of T357/S358 and S368 was dependent on SMG1, whereas CDK12 increased the phosphorylation of ΔNp63α at S66/S68 and S301. Indirect phosphorylation of ΔNp63α in the presence of SMG1 enabled ΔNp63α to bind to the tumor suppressor p53-specific DNA recognition sequence, whereas CDK12 rendered ΔNp63α less responsive to UV irradiation and was not required for specific DNA binding. CDK12 and SMG1 are known to regulate the transcription and splicing of RNAs and the decay of nonsense RNAs, respectively, and a subset of p63-specific protein-protein interactions at the chromatin also linked p63 to RNA transcription and decay. We observed that in the absence of p63, UV irradiation resulted in more ORF1p. ORF1p is the first protein product of the intronless non-LTR retrotransposon LINE-1, indicating a derailed surveillance of RNA processing and/or translation. Our results suggest that p63 phosphorylation and transcriptional activation might correspond to altered RNA processing and/or translation to protect proliferating keratinocytes from increased genotoxic stress.


Asunto(s)
Queratinocitos , Transactivadores , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Queratinocitos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , ARN/metabolismo , Transactivadores/genética , Factores de Transcripción , Proteínas Supresoras de Tumor , Rayos Ultravioleta
18.
Biochem Biophys Res Commun ; 548: 91-97, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33636640

RESUMEN

Autotaxin (ATX) and its product lysophosphatidic acid (LPA) have been implicated in lung fibrosis and cancer. We have studied their roles in DNA damage induced by carcinogenic crystalline silica particles (CSi). In an earlier study on bronchial epithelia, we concluded that ATX, via paracrine signaling, amplifies DNA damage. This effect was seen at 6-16 h. A succeeding study showed that CSi induced NLRP3 phosphorylation, mitochondrial depolarization, double strand breaks (DSBs), and NHEJ repair enzymes within minutes. In the current study we hypothesized a role for the ATX-LPA axis also in this rapid DNA damage. Using 16HBE human bronchial epithelial cells, we show ATX secretion at 3 min, and that ATX inhibitors (HA130 and PF8380) prevented both CSi-induced mitochondrial depolarization and DNA damage (detected by γH2AX and Comet assay analysis). Experiments with added LPA gave similar rapid effects as CSi. Furthermore, Rac1 was activated at 3 min, and a Rac1 inhibitor (NSC23766) prevented mitochondrial depolarization and genotoxicity. In mice the bronchial epithelia exhibited histological signs of ATX activation and signs of DSBs (53BP1 positive nuclei) minutes after a single inhalation of CSi. Our data indicate that CSi rapidly activate the ATX-LPA axis and within minutes this leads to DNA damage in bronchial epithelial cells. Thus, ATX mediates very rapid DNA damaging effects of inhaled particles.


Asunto(s)
Daño del ADN , Hidrolasas Diéster Fosfóricas/metabolismo , Mucosa Respiratoria/patología , Dióxido de Silicio/química , Proteína de Unión al GTP rac1/metabolismo , Animales , Cristalización , Roturas del ADN de Doble Cadena/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Isoxazoles/farmacología , Lisofosfolípidos/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Propionatos/farmacología , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores
19.
Anal Biochem ; 630: 114322, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343482

RESUMEN

Autotaxin (ATX) plays an important role in (patho-)physiological lysophosphatidic acid (LPA) signaling. Here we describe the establishment of novel cell-based ATX assay formats. ATX-mediated LPA generation is detected by using a stable LPA receptor reporter cell line. In a first assay variant, ATX-mediated LPA generation is started in the absence of cells and the reaction mix is transferred to the reporter cells after stopping the reaction (two-tube assay). In a second assay variant, ATX is added to the reporter cells expressing the known autotaxin binding partners integrin ß1, integrin ß3 and the LPA receptor 1. LPA generation is started in the presence of cells and is detected in real-time (one-tube assay). Structurally diverse ATX inhibitors with different binding modes were characterized in both cell-based assay variants and were also tested in the well-established biochemical choline release assay. ATX inhibitors displayed similar potencies, regardless if the assay was performed in the absence or presence of cells, and comparable results were obtained in all three assay formats. In summary, our novel cell-based ATX assay formats are well-suited for sensitive detection of enzyme activity as well as for the characterization of ATX inhibitors in the presence and absence of cells.


Asunto(s)
Hidrolasas Diéster Fosfóricas/análisis , Células Cultivadas , Humanos , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/metabolismo
20.
Mol Pharm ; 18(9): 3352-3364, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34319110

RESUMEN

Autotaxin (ATX) is a secreted enzyme responsible for producing lysophosphatidic acid (LPA). The ATX/LPA signaling axis is typically activated in wound healing and tissue repair processes. The ATX/LPA axis is highjacked and upregulated in the progression and persistence of several chronic inflammatory diseases, including cancer. As ATX inhibitors are now progressing to clinical testing, innovative diagnostic tools such as positron emission tomography (PET) are needed to measure ATX expression in vivo accurately. The radiotracer, [18F]PRIMATX, was recently developed and tested for PET imaging of ATX in vivo in a murine melanoma model. The goal of the present work was to further validate [18F]PRIMATX as a PET imaging agent by analyzing its in vivo metabolic stability and suitability for PET imaging of ATX in models of human 8305C thyroid tumor and murine 4T1 breast cancer. [18F]PRIMATX displayed favorable metabolic stability in vivo (65% of intact radiotracer after 60 min p.i.) and provided sufficient tumor uptake profiles in both tumor models. Radiotracer uptake could be blocked by 8-12% in 8305C thyroid tumors in the presence of ATX inhibitor AE-32-NZ70 as determined by PET and ex vivo biodistribution analyses. [18F]PRIMATX also showed high brain uptake, which was reduced by 50% through the administration of ATX inhibitor AE-32-NZ70. [18F]PRIMATX is a suitable radiotracer for PET imaging of ATX in the brain and peripheral tumor tissues.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas/análisis , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Tiroides/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Radioisótopos de Flúor/administración & dosificación , Humanos , Masculino , Ratones , Imagen Molecular/métodos , Hidrolasas Diéster Fosfóricas/metabolismo , Radiofármacos/administración & dosificación , Neoplasias de la Tiroides/patología , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA