Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biotechnol ; 194: 81-3, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25499805

RESUMEN

Here we report the complete and finished genome sequence of Streptomyces glaucescens GLA.O (DSM 40922), a natural producer of the alpha-glucosidase inhibitor acarbose, which is used in the treatment of type-2 diabetes mellitus. The genome of S. glaucescens GLA.O consists of two replicons, the chromosome with a size of 7,453,200bp and a G+C content of 73.0% as well as a plasmid named pSglau1 with a size of 170,574bp and a G+C content of 69.06%.


Asunto(s)
Cromosomas Bacterianos/genética , Streptomyces/genética , Composición de Base/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Datos de Secuencia Molecular , Plásmidos/genética
2.
Front Microbiol ; 6: 632, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26161077

RESUMEN

Actinoplanes sp. SE50/110 produces the α-glucosidase inhibitor acarbose, which is used to treat type 2 diabetes mellitus. To obtain a comprehensive understanding of its cellular metabolism, a genome-scale metabolic model of strain SE50/110, iYLW1028, was reconstructed on the bases of the genome annotation, biochemical databases, and extensive literature mining. Model iYLW1028 comprises 1028 genes, 1128 metabolites, and 1219 reactions. One hundred and twenty-two and eighty one genes were essential for cell growth on acarbose synthesis and sucrose media, respectively, and the acarbose biosynthetic pathway in SE50/110 was expounded completely. Based on model predictions, the addition of arginine and histidine to the media increased acarbose production by 78 and 59%, respectively. Additionally, dissolved oxygen has a great effect on acarbose production based on model predictions. Furthermore, genes to be overexpressed for the overproduction of acarbose were identified, and the deletion of treY eliminated the formation of by-product component C. Model iYLW1028 is a useful platform for optimizing and systems metabolic engineering for acarbose production in Actinoplanes sp. SE50/110.

3.
J Biotechnol ; 190: 85-95, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24642337

RESUMEN

Actinoplanes sp. SE50/110 is the producer of the alpha-glucosidase inhibitor acarbose, which is an economically relevant and potent drug in the treatment of type-2 diabetes mellitus. In this study, we present the detection of transcription start sites on this genome by sequencing enriched 5'-ends of primary transcripts. Altogether, 1427 putative transcription start sites were initially identified. With help of the annotated genome sequence, 661 transcription start sites were found to belong to the leader region of protein-coding genes with the surprising result that roughly 20% of these genes rank among the class of leaderless transcripts. Next, conserved promoter motifs were identified for protein-coding genes with and without leader sequences. The mapped transcription start sites were finally used to improve the annotation of the Actinoplanes sp. SE50/110 genome sequence. Concerning protein-coding genes, 41 translation start sites were corrected and 9 novel protein-coding genes could be identified. In addition to this, 122 previously undetermined non-coding RNA (ncRNA) genes of Actinoplanes sp. SE50/110 were defined. Focusing on antisense transcription start sites located within coding genes or their leader sequences, it was discovered that 96 of those ncRNA genes belong to the class of antisense RNA (asRNA) genes. The remaining 26 ncRNA genes were found outside of known protein-coding genes. Four chosen examples of prominent ncRNA genes, namely the transfer messenger RNA gene ssrA, the ribonuclease P class A RNA gene rnpB, the cobalamin riboswitch RNA gene cobRS, and the selenocysteine-specific tRNA gene selC, are presented in more detail. This study demonstrates that sequencing of enriched 5'-ends of primary transcripts and the identification of transcription start sites are valuable tools for advanced genome annotation of Actinoplanes sp. SE50/110 and most probably also for other bacteria.


Asunto(s)
Acarbosa/metabolismo , Micromonosporaceae/genética , Anotación de Secuencia Molecular , ARN Mensajero/química , Análisis de Secuencia de ARN , Genoma Bacteriano , Inhibidores de Glicósido Hidrolasas , Micromonosporaceae/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleasa P/genética , Selenocisteína/genética , Vitamina B 12/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA