RESUMEN
Acetonitrile, a polar molecule that cannot form hydrogen bonds on its own, interacts with solvent molecules mainly through the lone pair of its nitrogen atom and the π electrons of its CN triple bond [Correction added on 17 July 2024, after first online publication: Acetole has been changed to Acetonitrile in the preceeding sentence.]. Interestingly, acetonitrile exhibits an unexpected strengthening of the triple bond's force constant in an aqueous environment, leading to an upshift (blueshift) in the corresponding stretching vibration: this effect contrasts with the usual consequence of hydrogen bonding on the vibrational frequencies of the acceptor groups, that is, frequency redshift. This investigation elucidates this phenomenon using Raman spectroscopy to examine the behavior of acetonitrile in organic solvent, water, and silver ion aqueous solutions, where an even more pronounced upshift is observed. Raman spectroscopy is particularly well suited for analyzing aqueous solutions due to the minimal scattering effect of water molecules across most of the vibrational spectrum. Computational approaches, both static and dynamical, based on Density Functional Theory and hybrid functionals, are employed here to interpret these findings, and accurately reproduce the vibrational frequencies of acetonitrile in different environments. Our calculations also allow an explanation for this unique behavior in terms of electric charge displacements. On the other hand, the study of the interaction of acetonitrile with water molecules and metal ions is relevant for the use of this molecule as a solvent in both chemical and pharmaceutical applications.
RESUMEN
Solution-processing is the primary method for fabricating high-efficiency perovskite solar cells (PSCs), where solvent choice critically influences film formation and quality. Although additives can optimize film formation dynamics by balancing nucleation and growth of perovskite, they can also induce heterogeneous nucleation due to competitive coordination and varying crystallization kinetics, leading to compositional heterogeneity and structural disorders. Herein, a perovskite precursor solution is developed using acetonitrile (ACN) as a weak coordination host solvent instead of the traditional N,N-dimethylformamide (DMF). The ACN-based perovskite precursor solution reduces heterogeneous nucleation typically caused by the competitive coordination effect of DMF, and cuts costs by half compared to DMF-based precursor solutions. This approach promotes a single crystallization pathway via a dimethyl sulfoxide-solvated intermediate phase to α-FAPbI3, which extends the anti-solvent operation window, and enhances the crystallinity of perovskite films, and reduces defect states. The power conversion efficiencies (PCE) of 23.62% and 20.13% is achieved for the PSC and minimodule, respectively. The PSC retains over 97% of its initial efficiency after 800 h of continuous illumination under maximum power point tracking (MPPT). These findings provide valuable insights into solvent interactions in perovskite film formation and offer a cost-effective strategy for improving the device's performance and stability.
RESUMEN
To investigate the solvent effect on the detection of peptides and proteins, nanoelectrospray mass spectra were measured for mixtures of 1 % acetic acid and 5 × 10-6 M gramicidin S (G), ubiquitin (U), and cytochrome c (C) in water (W), methanol (MeOH), 1-propanol (1-PrOH), acetonitrile (AcN), and 2-propanol (2-PrOH). Although doubly protonated G (G2+) and multiply protonated U (Un+) and C (Cn+) were readily detected with a wide range of mixing ratios of W solutions for MeOH, 1-PrOH, and AcN, Cn+ was totally suppressed for the solutions with mixing ratios (v/v) of W/2-PrOH (50/50) and (70/30). However, denatured Cn+ started to be detected with W/2-PrOH (90/10) together with Gn+ (n = 1, 2) and native Un+ (n = 6-8). At the mixing ratio of W/2-PrOH (95/5), native Cn+ (n = 7-10) together with Gn+ (n = 1, 2) and native Un+ (n = 6-8) were detected with high ion intensities. The use of W/2-PrOH (95/5) is profitable because it enables the detection of native proteins with high detection sensitivities.
Asunto(s)
1-Propanol , 2-Propanol , Solventes , Proteínas , Espectrometría de Masas , Péptidos , Agua , MetanolRESUMEN
Photochemistry of the (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile was studied by means of stationary photolysis and nanosecond laser flash photolysis. The primary photochemical process was found to be an intramolecular electron transfer followed by an escape of an â¢NO3 radical to the solution bulk. The spectra of two successive Pt(III) intermediates were detected in the microsecond time domain, and their spectral and kinetic characteristics were determined. These intermediates were identified as PtIII(NO3)52- and PtIII(NO3)4- complexes. Disproportionation of Pt(III) species resulted in formation of final Pt(II) products.
RESUMEN
The ultrafast processes caused by photoexcitation of (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile were studied by means of transient absorption (TA) pump-probe spectroscopy and verified by quantum chemical calculations. The primary photochemical process was found to be an inner-sphere electron transfer followed by an escape of an â¢NO3 radical to the bulk solution. The reaction occurs via the dissociative triplet excited LMCT state of the initial complex. Based on the experimental data and quantum chemical calculations, the mechanism of ultrafast photophysical and photochemical processes is proposed.
RESUMEN
Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species present in each environment. Pollen intake is essential for pollinators' health and survival. During the foraging activity, some pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pollen) changing the pollen chemical profile. Different tools have been developed for the identification of the botanical origin of pollen, based on microscopy, spectrometry, or molecular markers. However, up to date, corbicular pollen has never been investigated. In our work, corbicular pollen from 5 regions with different climate conditions was collected during spring. Pollens were identified with microscopy-based techniques, and then analyzed in MALDI-MS. Four different chemical extraction solutions and two physical disruption methods were tested to achieve a MALDI-MS effective protocol. The best performance was obtained using a sonication disruption method after extraction with acetic acid or trifluoroacetic acid. Therefore, we propose a new rapid and reliable methodology for the identification of the botanical origin of the corbicular pollens using MALDI-MS. This new approach opens to a wide range of environmental studies spanning from plant biodiversity to ecosystem trophic interactions.
Asunto(s)
Polen , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Polen/química , Abejas/fisiología , AnimalesRESUMEN
During the key event 1 of skin sensitization defined as covalent binding or haptenization of sensitizer to either thiol or amino group of skin proteins, a sensitizer not only covalently binds with skin proteins but also interacts with nucleophilic small molecules such as glutathione (GSH). Although GSH would not be directly associated with skin sensitization, this interaction may be applied for developing an alternative test method simulating key event 1, haptenization. Thus, the aim of the present study was to examine whether N-acetyl-L-cysteine methyl ester (NACME), a thiol-containing compound, was selected as an electron donor to determine whether NACME reacted with sensitizers. Following a reaction of NACME with a sensitizer in a 96-well plate, the remaining NACME was measured spectrophotometrically using 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB). Following the optimization of test conditions with two different vehicles, such as acetonitrile (ACN) and dimethyl sulfoxide (DMSO), 64 test chemicals were tested to determine the predictive capacity of current NACME test method. The results obtained showed, the predictive capacity of 94.6% sensitivity, 88.9% specificity, and 92.2% accuracy utilizing DMSO as a vehicle with a cutoff NACME depletion of 5.85%. The three parameters were also over 85% in case of ACN. These values were comparable to or better than other OECD-approved test methods. Data demonstrated that a simple thiol-containing compound NACME might constitute as a reliable candidate for identifying reactive skin sensitizers, and that this method be considered as practical method as a screening tool for assessing a chemical's tendency to initiate skin sensitization.
Asunto(s)
Acetilcisteína , Acetilcisteína/análogos & derivados , Espectrofotometría , Humanos , Piel/efectos de los fármacos , Ácido Ditionitrobenzoico/química , Haptenos/toxicidad , Haptenos/química , Alternativas a las Pruebas en Animales/métodos , AnimalesRESUMEN
Following previous studies, the ternary mixture of methanol/formamide/acetonitrile (MeOH/Formamide/MeCN) was studied using the UV-Vis absorption spectra at 298.15 K with a set of five probes, 4-nitroaniline, 4-nitroanisole, 4-nitrophenol, N,N-dimethyl-4-nitroaniline and 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolate (Reichardt betaine dye), for a total of 22 mole ternary fractions. In addition, nine mole fractions of the underling binary mixtures, MeOH/Formamide and Formamide/MeCN were also tested. Spectroscopic results were used to model the preferential solvation order for each probe in the mixtures. The Kamlet-Taft solvatochromic solvent parameters, α, ß, and π*, were also computed through the use of the solvatochromic shifts of the five probe indicators. Moreover, discrepancies in the spectroscopic behavior of 4-nitrophenol in formamide-rich mixtures were observed and analyzed.
RESUMEN
Despite several small molecules being encapsulated inside cage-opened fullerene derivatives, such species have not considerably affected the structures and properties of the outer carbon cages. Herein, we achieved an effective inner-space modification for an open-cage C60 derivative by insertion of a neutral CH3 CN molecule into the cavity. The CH3 CN@open-C60 thus obtained showed an enhanced polarity, thus affording an easy separation from a mixture containing the empty cage by column chromatography on silica gel, without the preparative HPLC that was needed for previous cases. The less negative reduction potentials with respect to those of empty cage reflect the decreased energy level of the LUMO, which is supported by the DFT calculations. NMR spectroscopy, single-crystal X-ray analysis, and theoretical calculations revealed that both the presence of the encapsulated CH3 CN and cage deformation caused by the CH3 CN play an essential role in the change of the electronic properties. Furthermore, the favored binding affinity of deuterated acetonitrile CD3 CN with internal C60 surface is discussed.
RESUMEN
As acetonitrile is a widely used solvent for the chemical industry, the recovery of acetonitrile from acetonitrile wastewater is significant for both industrial cost reduction and environmental protection. In this article, a simple, low-energy, and low-cost strategy is proposed for the effective separation of acetonitrile from high-concentration acetonitrile wastewater. The approach is based on a sequential combination of two steps: salt-induced phase separation and hydrophobic filtration. The acetonitrile wastewater was first induced to split into two phases by salt, that is, the acetonitrile-rich phase and the water-rich phase, then the above two phases were poured into the hydrophobic filter paper funnel for the separation. It was shown that NaCl is a suitable salting-out reagent, and that hydrophobic filter papers-obtained from modification by butyltrichlorosilane and octyltrichlorosilane were the optimal choice for hydrophobic filtration. The salt-induced phase separation process is able to increase the volume fraction of acetonitrile in the acetonitrile-rich phase up to 92%. The acetonitrile-rich phase can pass through the hydrophobic filter paper, whereas the water-rich phase was intercepted. The hydrophobic filter paper retained strong hydrophobicity and high acetonitrile-separating capacity after 3 months storage, or upon immersion in acetonitrile-water mixtures for 12 h, or applied for 25 consecutive separations.
RESUMEN
Cruciferous plants are frequently used for ecologically benign weed control in agricultural production. Most effective Broccoli varieties were screened using the entropy method-based topsis model at first. Result showed that varieties of Lvwawa and Lvbaoshiwere most effective in allelopathic suppression on radishes. Column and thin-layer chromatography were used to extract the allelopathic compounds from broccoli residues, which contained various herbicidal active substances; among them, purified single-molecule indole-3-acetonitrile has a stronger inhibitory effect than pendimethalin (commercial herbicide). The weed inhibition rate increased with increasing broccoli residue dosage, with a 40â g/m2 broccoli residue dose yielding the highest suppression rate. Its effect was similar to that of indole-3-acetic acid. Too much of this substance leads to the plant's death. Moreover, broccoli residues had effective control effect on weeds in natural soils in greenhouse and field trials. The results demonstrated that broccoli residue could be used for weed management in field for abundant allopathic suppression molecules to weeds, and that Indole-3-acetonitrile is one of the most important allopathic molecule.
Asunto(s)
Brassica , Agricultura/métodos , SueloRESUMEN
Rational design of electrocatalysts is essential to achieve desirable performance of electrochemical synthesis process. Heterostructured catalysts have thus attracted widespread attention due to their multifunctional intrinsic properties, and diverse catalytic applications with corresponding outstanding activities. Here, we report an in situ restoration strategy for the synthesis of ultrathin Pd-Ni(OH)2 nanosheets. Such Pd-Ni(OH)2 nanosheets exhibit excellent activity and selectivity towards reversible electrochemical reforming of ethylamine and acetonitrile. In the acetonitrile reduction process, Pd acts as reaction center, while Ni(OH)2 provide proton hydrogen through promoting the dissociation of water. Also ethylamine oxidation process can be achieved on the surface of the heterostructured nanosheets with abundant Ni(II) defects. More importantly, an electrolytic cell driven by solar cells was successfully constructed to realize ethylamine-acetonitrile reversible reforming. This work demonstrates the importance of heterostructure engineering in the rational synthesis of multifunctional catalysts towards electrochemical synthesis of fine chemicals.
RESUMEN
Sex hormones, including androgens, estrogens, and progestogens, are important biomarkers for various diseases. Quantification of sex hormones is typically conducted by LC-MS/MS. At present, most methods require liquid-liquid extraction or solid phase extraction for sample preparation. However, these pretreatments are prone to compromise LC-MS/MS throughput. To improve on the current standard practices, we investigated cold-induced phase separation for sex hormone extraction. After protein precipitation with acetonitrile and adjusting the solution constitution with water, samples were stored at -30°C for 10 min to generate two distinct phases: an acetonitrile-rich layer on top of a water-rich layer. During this process, the hydrophobic sex hormones spontaneously separate into the upper layer. This simple and reliable cold-induced phase separation-based LC-MS/MS methodology was used here to simultaneously detect estrone, estradiol, estriol, testosterone, androstenedione, dehydroepiandrosterone, progesterone, and 17-hydroxyprogesterone in serum. Validation of this method indicated satisfactory performance, including acceptable linearity, accuracy, precision, and tractability. Compared with the mainstream liquid-liquid extraction-based method, this new method exhibits significant progress in throughput, which shortens the time cost of sample preparation from 90 to 40 min. We propose that this method can be an excellent alternative for sex hormone analysis in routine clinical laboratories.
Asunto(s)
Hormonas Esteroides GonadalesRESUMEN
Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound 'Heatin', containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.
Asunto(s)
Aminohidrolasas/metabolismo , Arabidopsis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Aldehído Oxidasa/genética , Aldehído Oxidasa/metabolismo , Aminohidrolasas/genética , Apomorfina/análogos & derivados , Apomorfina/farmacología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Herbicidas/farmacología , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos , Estructura Molecular , Picloram/farmacología , Relación Estructura-Actividad , Transcriptoma/efectos de los fármacosRESUMEN
The aim was to develop a reliable rapid reversed-phase high-performance liquid chromatography (RP-HPLC) method to simultaneously determine the main bovine milk protein fractions, including their genetic variants. Compared to the previous studies, our method is able to separate the main protein fractions within 20 min of total run time. The method validation consisted of testing repeatability, reproducibility linearity, repeatability, and accuracy. The procedure was developed using raw individual, bulk, and commercially available heat-treated cow milk samples. The RSD of peak areas ranged from 1.43 to 3.16% within analytical day and from 3.29 to 6.70% across analytical days. The method can be applied to investigate both raw and heat-treated milk samples.
Asunto(s)
Proteínas de la Leche , Leche , Animales , Femenino , Bovinos , Proteínas de la Leche/análisis , Leche/química , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Cromatografía de Fase Inversa/métodosRESUMEN
Per- and polyfluoroalkyl substances (PFASs) are widely used anthropogenic chemicals. For environmental and toxicological analysis, it is important to understand the stability of PFASs, including novel per- and polyfluoroalkyl ether acids (PFEAs), in commonly used solvents. In this study, we investigated the effects of PFAS characteristics, solvent type, water-to-organic solvent ratio, and temperature on the stability of 21 PFASs including 18 PFEAs. None of the studied PFASs showed measurable degradation in deionized water, methanol, or isopropyl alcohol over 30 days; however, nine PFEAs degraded in the polar aprotic solvents acetonitrile, acetone, and dimethyl sulfoxide (DMSO). PFEA degradation followed first-order kinetics, and first-order rate constants increased with increasing temperature and with decreasing water-to-organic solvent ratio. Monoethers with a carboxylic acid functional group adjacent to a tertiary carbon (>CF-COOH) degraded more rapidly than multiethers in which the carboxylic acid moiety was adjacent to repeating -CF2O- groups. In contrast, monoethers with a carboxylic acid moiety adjacent to a secondary carbon (-CF2-COOH) were stable in all tested solvents. Using high-resolution mass spectrometry, we determined that PFEAs with a >CF-COOH group were stoichiometrically decarboxylated in aprotic solvents and formed products with a >CFH group; e.g., hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX), HFPO-trimer acid, and HFPO-tetramer acid were stoichiometrically converted to Fluoroethers E-1, E-2, and E-3, respectively. PFEA degradation results highlight the importance of solvent choice when preparing dosing solutions and performing extractions for environmental and toxicological assessments of PFEAs.
Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Carbono , Ácidos Carboxílicos , Éter , Éteres , Fluorocarburos/análisis , Solventes , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
Chemical treatments are the main strategy to control gastrointestinal nematodes in sheep, and the emergence of anthelmintic resistance, as consequence, results in control failures and leads to economic losses. Thus, molecular tests may constitute an excellent tool for the early detection of anthelmintic resistance-related mutations. Thus, a polymerase chain reaction (PCR)-based genotyping assay followed by polyacrylamide gel electrophoresis (PAGE) was developed to detect polymorphisms in exon 11 of the acetylcholine receptor monepantel-1 gene (mptl-1) that were previously associated with monepantel resistance through a genome-wide study in Haemonchus contortus. DNA samples recovered from individual and pooled third-stage larvae from two susceptible field-derived isolates and five (three in vivo-derived and two field-derived) resistant populations were used. New polymorphisms, including a 6-bp deletion and a 3-bp insertion, were detected in resistant individuals. These indels, confirmed using sequencing of cloned PCR products, are predicted to result in amino acid changes in transmembrane domain 2 (TMD2) of the MPTL-1 protein. The two susceptible isolates showed only the presence of the wild-type allele (100%), whereas lower frequencies of the wild-type allele were detected in monepantel-resistant populations (11.1 to 66.7%). These findings report new polymorphisms in the mptl-1 gene, validate the results obtained through genomic mapping for monepantel resistance, and provide a PCR-based assay to genotype indels located in exon 11 of mptl-1 in H. contortus.
Asunto(s)
Antihelmínticos , Hemoncosis , Haemonchus , Enfermedades de las Ovejas , Ovinos/genética , Animales , Estudio de Asociación del Genoma Completo , Resistencia a Medicamentos/genética , Antihelmínticos/uso terapéutico , Enfermedades de las Ovejas/tratamiento farmacológico , Exones , Hemoncosis/veterinariaRESUMEN
An innovative charge-transfer complex between the Schiff base 2-((2-hydroxybenzylidene) amino)-2-(hydroxymethyl) propane-1,3-diol [SAL-THAM] and the π-acceptor, chloranilic acid (CLA) within the mole ratio (1:1) was synthesized and characterized aiming to investigate its electronic transition spectra in acetonitrile (ACN), methanol (MeOH) and ethanol (EtOH) solutions. Applying Job`s method in the three solvents supported the 1:1 (CLA: SAL-THAM) mole ratio complex formation. The formation of stable CT- complex was shown by the highest values of charge-transfer complex formation constants, KCT, calculated using minimum-maximum absorbance method, with the sequence, acetonitrile > ethanol > methanol DFT study on the synthesized CT complex was applied based on the B3LYP method to evaluate the optimized structure and extract geometrical and reactivity parameters. Based on TD-DFT theory, the electronic properties, 1H and 13C NMR, IR, and UV-Vis spectra of the studied system in different solvents showing good agreement with the experimental studies. MEP map described the possibility of hydrogen bonding and charge transfer in the studied system. Finally, a computational approach for screening the antiviral activity of CT - complex towards SARS-CoV-2 coronavirus protease via molecular docking simulation was conducted and confirmed with molecular dynamic (MD) simulation.
RESUMEN
A novel method for the determination of ultra-trace cobalt by dispersive liquid-liquid microextraction (DLLME) coupled with graphite furnace atomic absorption spectrometry has been developed. It is based on the color reaction of Co2+ with 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-PADMA) in a Britton-Robinson buffer solution at pH 6.0 to form stable hydrophobic chelates, which were separated and enriched by DLLME with 1,2-dichloroethane (CH2ClCH2Cl) as extraction and acetonitrile (CH3CN) as a dispersive solvent. The sedimented phase containing the chelates is then determined with GFAAS. Parameters that affect extraction efficiency, such as types and volumes of extraction and disperser solvents, pH of sample solution, extraction time, concentration of the chelating agent 5-Br-PADMA, and salt effect, were investigated. Under optimal conditions, the calibration graph was linear over the range 0.05-1.0 ng/mL, with a correlation coefficient of 0.9922 and a detection limit of 0.03 ng/mL. Preconcentration factor (PF) is calculated as the ratio of the aqueous solution volume (5 mL) to that of the organic phase volume (40 µL), and enrichment factor (EF) is calculated as the ratio of the slopes of the calibration graphs obtained with and without DLLME for 5.0 mL of sample solution, which were 120 and 112.5, respectively. The extraction efficiency, calculated by EF/PF·100, was 93.8%. The relative standard deviation (RSD) at the 0.5 ng/mL Co2+ level was 3.8% (n = 6). The method has been applied to the determination of trace cobalt in water samples with satisfactory results.
Asunto(s)
Grafito , Microextracción en Fase Líquida , Contaminantes Químicos del Agua , Quelantes/química , Cobalto/análisis , Grafito/química , Concentración de Iones de Hidrógeno , Límite de Detección , Microextracción en Fase Líquida/métodos , Solventes/química , Espectrofotometría Atómica/métodos , Agua/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
Access to the enthalpy and entropy of the formation of metal complexes in solution is essential for understanding the factors determining their thermodynamic stability and speciation. As a case study, in this report we systematically examine the complexation of silver(I) in acetonitrile (AN) with the following monoamines: n-propylamine (n-pr), n-butylamine (n-but), hexylamine (hexyl), diethylamine (di-et), dipropylamine (di-pr), dibutylamine (di-but), triethylamine (tri-et) and tripropylamine (tri-pr). The study shows that the complex stabilities are quite independent of the length of the substitution chain on the N atom and demonstrates that, in general, the overall enthalpy terms associated with the complex formation are strongly exothermic, whereas the entropy values oppose the complex formations. In addition, we examined the similarity of the formation constants of AgL complexes of the primary monoamines in AN, dimethylsulfoxide (DMSO) and water, which were unexpected on the basis of the difference between the donor properties of solvents.