Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Food Microbiol ; 115: 104336, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567625

RESUMEN

The active ester-synthesis microorganisms in medium-high temperature Daqu (MHT-Daqu) largely impact the strong-flavor Baijiu quality, while their actual composition and metabolic mechanism remain unclear. Here, to explore how the active microbiota contributes to MHT-Daqu ester biosynthesis, metatranscriptomic and metaproteomic analyses coupled with experimental verification were performed. The results showed that the MHT-Daqu microbiota with the higher ester-forming ability exhibited a more active dynamic alteration from transcription to translation. The genera Aspergillus, Bacillus, Leuconostoc, and Pediococcus could transcribe and translate obviously more ester-forming enzymes. In the ester-synthesis metabolic network, the synergetic microbiota confirmed by interaction analysis, containing Eurotiales, Bacillales, and Saccharomycetales, played an essential role, in which the Eurotiales and its representative genus Aspergillus contributed the highest transcript and protein abundance in almost every metabolic process, respectively. The recombined fermentation verified that their corresponding genera could produce the ester and precursor profiles very close to that of the original MHT-Daqu active microbiota, while the microbiota without Aspergillus caused a polar separation. These results indicated that the synergetic microbiota with Aspergillus as the core dominated the metabolic network of ester synthesis in MHT-Daqu. Our study provides a detailed framework of the association between the active synergetic microbiota and ester synthesis in MHT-Daqu.


Asunto(s)
Bacterias , Microbiota , Bebidas Alcohólicas/análisis , Temperatura , Aspergillus/genética , Fermentación , Redes y Vías Metabólicas
2.
J Environ Sci (China) ; 133: 37-47, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37451787

RESUMEN

Polymyxin B (PMB) has received widespread attention for its use as a last-line therapy against multidrug-resistant bacterial infection. However, the consequences of unintended PMB exposure on organisms in the surrounding environment remain inconclusive. Therefore, this study investigated the effects of soil PMB residue on the gut microbiota and transcriptome of earthworms (Metaphire guillelmi). The results indicated that the tested doses of PMB (0.01-100 mg/kg soil) did not significantly affect the richness and Shannon's diversity index of the earthworm gut microbiota, but PMB altered its community structure and taxonomic composition. Moreover, PMB significantly affected Lysobacter, Aeromonas, and Sphingomonas in the soil microbiota, whereas Pseudomonas was significantly impacted the earthworm gut microbiota. Furthermore, active bacteria responded more significantly to PMB than the total microbial community. Bacterial genera such as Acinetobacter and Bacillus were highly correlated with differential expression of some genes, including up-regulated genes associated with folate biosynthesis, sulphur metabolism, and the IL-17 signalling pathway, and downregulated genes involved in vitamin digestion and absorption, salivary secretion, other types of O-glycan biosynthesis, and the NOD-like receptor signalling pathway. These results suggest that adaptation to PMB stress by earthworms involves changes in energy metabolism, their immune and digestive systems, as well as glycan biosynthesis. The study findings help elucidate the relationship between earthworms and their microbiota, while providing a reference for understanding the environmental risks of PMB.


Asunto(s)
Microbioma Gastrointestinal , Oligoquetos , Contaminantes del Suelo , Animales , Polimixina B , Oligoquetos/fisiología , Transcriptoma , Contaminantes del Suelo/análisis , Bacterias/metabolismo , Suelo/química , Polisacáridos/metabolismo
3.
Environ Sci Technol ; 55(1): 249-259, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33346641

RESUMEN

Metabolically active bacteria within built environments are poorly understood. This study aims to investigate the active airborne bacterial microbiota and compare the total and active microbiota in eight mechanically ventilated buildings over four consecutive seasons using the 16S rRNA gene (rDNA) and the 16S rRNA (rRNA), respectively. The relative abundances of the taxa of presumptive occupants and environmental origins were significantly different between the active and total microbiota. The Sloan neutral model suggested that ecological drift and random dispersal played a smaller role in the assembly of the active microbiota than the total microbiota. The seasonal nature of the active microbiota was consistent with that of the total microbiota in both indoor and outdoor environments, while only the indoor environment was significantly affected by geography. The relative abundances of the active and total taxa were positively correlated, suggesting that the high-abundance members were also the greatest contributors to the community-level metabolic activity. Based on the rRNA/rDNA ratio, the low-abundance members consistently had a higher taxon-level metabolic activity than the high-abundance members over seasons, suggesting that the low-abundance members may have the ability to survive and thrive in the indoor environment and their impact on the health of occupants cannot be overlooked.


Asunto(s)
Microbiota , Respiración Artificial , Bacterias/genética , Hong Kong , ARN Ribosómico 16S/genética , Estaciones del Año
4.
Microorganisms ; 12(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543660

RESUMEN

During their entire lifecycle, mariculture animals are farmed in water that contains various microorganisms with which they are in close associations. Microbial exchanges between the animals and their surrounding water can occur. However, little is known about the interactions between shrimp larvae and water, and more especially, about larval bacterial selection and microbiota modulation across ontogeny. To address this gap, using HiSeq sequencing targeting the V4 region of the 16S rRNA molecule, we investigated the active prokaryotic diversity and structure of healthy Penaeus stylirostris larvae and seawater. Comparisons between different larval stages revealed evidence of stage-specific microbiotas and biomarkers, a core microbiota common to all stages, and shared taxa between successive stages, suggesting vertical transmission of bacterial taxa. Comparisons between stage-specific microbiotas and core microbiotas with water storages highlighted that many taxa associated with the larvae were originally present in the natural seawater, underlining horizontal transmission of bacteria from water to larvae. As some of these lineages became active at specific larval stages, we suggest that larvae were able to modulate their microbiota. This study provides insight into larvae-microbiota interactions at the larval stage scale.

5.
Food Res Int ; 177: 113865, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225131

RESUMEN

Laotan Suancai, a Chinese traditional fermented vegetable, possesses a unique flavor that depends on the fermentative microbiota. However, the drivers of microbial succession and the correlation between flavor and active microbiota remain unclear. A total of 21 characteristic flavor metabolites were identified in Laotan Suancai by metabolomics, including 8 sulfides, 6 terpenes, 3 organic acids, 2 isothiocyanates, 1 ester, and 1 pyrazine. Metatranscriptome analysis revealed variations in the active microbiota at different stages of fermentation, and further analysis indicated that organic acids were the primary drivers of microbial succession. Additionally, we reconstructed the metabolic network responsible for the formation of characteristic flavor compounds and identified Companilactobacillus alimentarius, Weissella cibaria, Lactiplantibacillus plantarum, and Loigolactobacillus coryniformis as the core functional microbes involved in flavor development. This study contributed to profoundly understanding the relationship between the active microbiota and flavor quality formation, as well as the targeted selection of starters with flavor regulation abilities.


Asunto(s)
Microbiota , Compuestos Orgánicos Volátiles , Fermentación , Bacterias/genética , Bacterias/metabolismo , Microbiota/fisiología , Metabolómica , Compuestos Orgánicos Volátiles/metabolismo
6.
Food Chem ; 457: 140428, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024661

RESUMEN

Black rice wine (BRW) is a traditional Chinese rice wine with unique flavors; however, the formation pathways of flavor compounds driven by microbiota remain unclear. This study employed HPLC and GC-MS to reveal that during BRW fermentation, free amino acids increased sevenfold, volatile compounds doubled, and 28 key characteristic flavor compounds were identified. Metatranscriptomic analysis indicated that during fermentation, driven by physicochemical factors and microbial interactions, Saccharomyces gradually became the dominant active microorganism (relative abundance 87.01%-97.70%). Other dominant microorganisms (relative abundance >0.1%), including Saccharomycopsis, Pediococcus, Wickerhamomyces, and Weissella, significantly decreased. Meanwhile, the microflora's signature functions underwent succession: transcription early, carbohydrate metabolism mid-stage, and autophagy late. These microbial and functional successions facilitated the accumulation of flavor compounds. Metabolic network reconstruction revealed that Saccharomyces was pivotal in substrate degradation and flavor formation, while other dominant microorganisms actively promoted these processes. This study provides insights into regulating BRW's flavor through microorganisms.


Asunto(s)
Bacterias , Fermentación , Aromatizantes , Microbiota , Oryza , Vino , Vino/análisis , Vino/microbiología , Oryza/microbiología , Oryza/metabolismo , Oryza/química , Aromatizantes/metabolismo , Aromatizantes/química , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Gusto
7.
Front Microbiol ; 13: 886752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633721

RESUMEN

The many ecological niches present in an organism harbor distinct microorganisms called microbiota. Different factors can influence the establishment of these commensal microbial communities. In a previous article, we have concluded that some bacterial lineages associated with the early larval stages of the Pacific blue shrimp Litopenaeus stylirostris could be acquired from the breeders via a potential vertical transmission. The present study was conducted in order to investigate this hypothesis. Using HiSeq sequencing of the V4 region of 16S rRNA gene, we analyzed the active microbiota associated with the eggs and the nauplii of L. stylirsotris as well as with the reproductive organs of their breeders. Microbial communities associated with the rearing water were also considered to discriminate environmental microbial lineages. Using these analyses, we highlight a set of core bacterial families present in all samples and composed of members of Colwelliaceae, Alteromonadaceae, Pseudoalteromonadaceae, Saccharospirillaceae, Oceanospirillaceae, Vibrionaceae, Burkholderiaceae, Rhodobacteraceae, Flavobacteraceae, and Corynebacteriaceae; showing the importance of the environment in the establishment of the larval microbiota. We also present specific bacteria affiliated to the Arcobacteraceae, Rhodobacteraceae, Comamonadaceae, and Colwelliaceae families, which were only found in the breeders and their offspring strengthening the hypothesis of a potential vertical transmission shaping the active microbiota of the eggs and the nauplii of L. stylirostris.

8.
Microbiol Spectr ; 10(6): e0424122, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36416556

RESUMEN

Aquacultured animals are reared in water, where they interact with microorganisms which can be involved in their development, immunity, and disease. It is therefore interesting to study the rearing water microbiota, especially in the hatcheries of the Pacific blue shrimp Penaeus stylirostris, where larval mass mortalities occur. In this study, using HiSeq sequencing of the V4 region of the 16S rRNA molecule coupled with zootechnical and chemical analyses, we investigated whether any microbial lineages could be associated with certain mortality rates at a given larval stage. Our results indicate that the active microbiota of the rearing water was highly dynamic throughout the rearing process, with distinct communities influenced by progressive water eutrophication, larval stage, and survival rate. Our data also highlighted the role of the lagoon seawater on the rearing water microbiome, as many operational taxonomic units (OTUs) specific to a given larval stage and survival rate were detected in the primary reservoir which contained the lagoon water. We also identified biomarkers specific to water eutrophication, with Alteromonadaceae, Vibrionaceae, and Methylophilaceae, respectively, linked to increases in ammonia, nitrogen, and soluble reactive phosphate, or to increases in colored dissolved organic matter in the rearing water; other biomarkers were specific to certain larval stages and survival rates. Indeed, the Marinobacteraceae were specific to the Nauplii, and the Thalassospiraceae and Saprospiraceae to the Zoea Good condition; when mortality occurred, the Litoricolaceae were specific to the Zoea Bad, Microbacteraceae to the Mysis Bad, and Methylophilaceae to the Mysis Worst condition. Thus, these biomarkers might be used as potential early warning sentinels in water storage to infer the evolution of larval rearing to improve shrimp larval rearing. IMPORTANCE In New Caledonia, rearing of P. stylirostris is one of the main economic activities; unfortunately, mass larval mortalities cause important production decreases, involving major economic losses for the farmers and the Territory. This phenomenon, which has occurred at any larval stage over the past decade, is poorly understood. The significance of our research is in the identification of biomarkers specific to larval stage and survival rate, with some of these biomarkers being already present in the lagoon water. This enhances the role of the lagoon on the active microbiota of the rearing water at various larval stages and survival rates. Together, our results help us understand which active microbial communities are present in the rearing water according to larval stage and health. This might lead to broader impacts on hatcheries by helping to develop useful tools for using the water-lagoon, reservoir, or rearing-to test for the presence of these biomarkers as an early monitoring strategy.


Asunto(s)
Microbiota , Penaeidae , Animales , Agua , Larva , ARN Ribosómico 16S/genética , Agua de Mar
9.
PeerJ ; 9: e12241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820157

RESUMEN

BACKGROUND: Microbial communities associated with animals are known to be key elements in the development of their hosts. In marine environments, these communities are largely under the influence of the surrounding water. In aquaculture, understanding the interactions existing between the microbiotas of farmed species and their rearing environment could help establish precise bacterial management. METHOD: In light of these facts, we studied the active microbial communities associated with the eggs and the nauplii of the Pacific blue shrimp (Litopenaeus stylirostris) and their rearing water. All samples were collected in September 2018, November 2018 and February 2019. After RNA extractions, two distinct Illumina HiSeq sequencings were performed. Due to different sequencing depths and in order to compare samples, data were normalized using the Count Per Million method. RESULTS: We found a core microbiota made of taxa related to Aestuariibacter, Alteromonas, Vibrio, SAR11, HIMB11, AEGEAN 169 marine group and Candidatus Endobugula associated with all the samples indicating that these bacterial communities could be transferred from the water to the animals. We also highlighted specific bacterial taxa in the eggs and the nauplii affiliated to Pseudomonas, Corynebacterium, Acinetobacter, Labrenzia, Rothia, Thalassolituus, Marinobacter, Aureispira, Oleiphilus, Profundimonas and Marinobacterium genera suggesting a possible prokaryotic vertical transmission from the breeders to their offspring. This study is the first to focus on the active microbiota associated with early developmental stages of a farmed shrimp species and could serve as a basis to comprehend the microbial interactions involved throughout the whole rearing process.

10.
J Adv Res ; 19: 105-112, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31341676

RESUMEN

Microbiome research has transformed the scientific landscape, as reflected by the exponential increase in microbiome-related publications from many different disciplines. Host-associated microbial communities play a role for almost all aspects of human, animal and plant biology and health. Consequently, there are tremendous expectations for the development of new clinical, agricultural and biotechnological applications of microbiome research. However, the field continues to be largely shaped by descriptive studies, the mechanistic understanding of microbiome functions for their hosts remains fragmentary, and direct applications of microbiome research are lacking. The aim of this review is therefore to provide a general introduction to the technical opportunities and challenges of microbiome research, as well as to make experimental and bioinformatic recommendations, i.e. (i) to avoid, reduce and assess the confounding effects of sample storage, nucleic acid isolation and microbial contamination; (ii) to minimize non-microbial contributions in host-associated microbiome samples; (iii) to sharpen the focus on physiologically relevant microbiome features by distinguishing signals from metabolically active and inactive or dead microbes and by adopting quantitative methods; and (iv) to enforce open data and protocol policies in order increase the transparency, reproducibility and credibility of the field.

11.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30726948

RESUMEN

In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.


Asunto(s)
Desnitrificación , Microbiota/fisiología , Plantas/microbiología , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Desnitrificación/genética , Interacciones Microbiota-Huesped , Microbiota/genética , Exudados de Plantas , Raíces de Plantas/química , Raíces de Plantas/clasificación , Raíces de Plantas/microbiología , Plantas/química , Plantas/clasificación , ARN Ribosómico 16S/genética , Rizosfera , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA