RESUMEN
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Asunto(s)
Inmunidad Innata/genética , ARN Bicatenario/genética , Virosis/inmunología , 2',5'-Oligoadenilato Sintetasa/metabolismo , Animales , Proteína 58 DEAD Box/metabolismo , Humanos , Inmunomodulación , Mamíferos , Nucleótido Desaminasas/metabolismo , Interferencia de ARN , eIF-2 Quinasa/metabolismoRESUMEN
ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.
Asunto(s)
Inflamación/inmunología , Purinas/metabolismo , Receptores Purinérgicos/metabolismo , ADP-Ribosilación , Adenosina Trifosfato/metabolismo , Animales , Metilación de ADN , Humanos , Inflamación/genética , Inflamación/metabolismo , Lisofosfolípidos/metabolismo , Transducción de SeñalRESUMEN
RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.
Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Microscopía por Crioelectrón/métodos , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfato , Adenosina Desaminasa/metabolismoRESUMEN
Adenosine-to-inosine RNA editing has been proposed to be involved in a bacterial anti-phage defense system called RADAR. RADAR contains an adenosine triphosphatase (RdrA) and an adenosine deaminase (RdrB). Here, we report cryo-EM structures of RdrA, RdrB, and currently identified RdrA-RdrB complexes in the presence or absence of RNA and ATP. RdrB assembles into a dodecameric cage with catalytic pockets facing outward, while RdrA adopts both autoinhibited tetradecameric and activation-competent heptameric rings. Structural and functional data suggest a model in which RNA is loaded through the bottom section of the RdrA ring and translocated along its inner channel, a process likely coupled with ATP-binding status. Intriguingly, up to twelve RdrA rings can dock one RdrB cage with precise alignments between deaminase catalytic pockets and RNA-translocation channels, indicative of enzymatic coupling of RNA translocation and deamination. Our data uncover an interesting mechanism of enzymatic coupling and anti-phage defense through supramolecular assemblies.
Asunto(s)
Adenosina Trifosfato , ARN , Adenosina Desaminasa/genéticaRESUMEN
G-protein-coupled receptors (GPCRs) represent a ubiquitous membrane protein family and are important drug targets. Their diverse signaling pathways are driven by complex pharmacology arising from a conformational ensemble rarely captured by structural methods. Here, fluorine nuclear magnetic resonance spectroscopy (19F NMR) is used to delineate key functional states of the adenosine A2A receptor (A2AR) complexed with heterotrimeric G protein (Gαsß1γ2) in a phospholipid membrane milieu. Analysis of A2AR spectra as a function of ligand, G protein, and nucleotide identifies an ensemble represented by inactive states, a G-protein-bound activation intermediate, and distinct nucleotide-free states associated with either partial- or full-agonist-driven activation. The Gßγ subunit is found to be critical in facilitating ligand-dependent allosteric transmission, as shown by 19F NMR, biochemical, and computational studies. The results provide a mechanistic basis for understanding basal signaling, efficacy, precoupling, and allostery in GPCRs.
Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/química , Receptor de Adenosina A2A/química , Regulación Alostérica , Sitios de Unión , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Cinética , Ligandos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Nanoestructuras/química , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de SeñalRESUMEN
Transcription and translation are two main pillars of gene expression. Due to the different timings, spots of action, and mechanisms of regulation, these processes are mainly regarded as distinct and generally uncoupled, despite serving a common purpose. Here, we sought for a possible connection between transcription and translation. Employing an unbiased screen of multiple human promoters, we identified a positive effect of TATA box on translation and a general coupling between mRNA expression and translational efficiency. Using a CRISPR-Cas9-mediated approach, genome-wide analyses, and in vitro experiments, we show that the rate of transcription regulates the efficiency of translation. Furthermore, we demonstrate that m6A modification of mRNAs is co-transcriptional and depends upon the dynamics of the transcribing RNAPII. Suboptimal transcription rates lead to elevated m6A content, which may result in reduced translation. This study uncovers a general and widespread link between transcription and translation that is governed by epigenetic modification of mRNAs.
Asunto(s)
Adenosina/análogos & derivados , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Transcripción Genética , Adenosina/metabolismo , Humanos , Metilación , Iniciación de la Cadena Peptídica Traduccional , ARN Polimerasa II/metabolismo , TATA BoxRESUMEN
The adenosine A1 receptor (A1-AR) is a G-protein-coupled receptor that plays a vital role in cardiac, renal, and neuronal processes but remains poorly targeted by current drugs. We determined a 3.2 Å crystal structure of the A1-AR bound to the selective covalent antagonist, DU172, and identified striking differences to the previously solved adenosine A2A receptor (A2A-AR) structure. Mutational and computational analysis of A1-AR revealed a distinct conformation of the second extracellular loop and a wider extracellular cavity with a secondary binding pocket that can accommodate orthosteric and allosteric ligands. We propose that conformational differences in these regions, rather than amino-acid divergence, underlie drug selectivity between these adenosine receptor subtypes. Our findings provide a molecular basis for AR subtype selectivity with implications for understanding the mechanisms governing allosteric modulation of these receptors, allowing the design of more selective agents for the treatment of ischemia-reperfusion injury, renal pathologies, and neuropathic pain.
Asunto(s)
Receptor de Adenosina A1/química , Agonistas del Receptor de Adenosina A1/química , Antagonistas del Receptor de Adenosina A1/química , Sitio Alostérico , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Receptor de Adenosina A1/genética , Receptor de Adenosina A2A/químicaRESUMEN
Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.
Asunto(s)
Transporte Activo de Núcleo Celular , Adenosina , Núcleo Celular , Neurogénesis , Neuronas , Proteína I de Unión a Poli(A) , ARN Circular , ARN , ARN Circular/metabolismo , ARN Circular/genética , Neuronas/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Unión a Poli(A)/metabolismo , Proteína I de Unión a Poli(A)/genética , Animales , ARN/metabolismo , ARN/genética , Línea Celular , Diferenciación Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismoRESUMEN
3', 5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signalling pathway, how they organized are inside the intracellular space and how they achieve exquisite regulation of signalling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalised cAMP signaling and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
RESUMEN
Sepsis results in elevated adenosine in circulation. Extracellular adenosine triggers immunosuppressive signaling via the A2a receptor (A2aR). Sepsis survivors develop persistent immunosuppression with increased risk of recurrent infections. We utilized the cecal ligation and puncture (CLP) model of sepsis and subsequent infection to assess the role of adenosine in post-sepsis immune suppression. A2aR-deficient mice showed improved resistance to post-sepsis infections. Sepsis expanded a subset of CD39hi B cells and elevated extracellular adenosine, which was absent in mice lacking CD39-expressing B cells. Sepsis-surviving B cell-deficient mice were more resistant to secondary infections. Mechanistically, metabolic reprogramming of septic B cells increased production of ATP, which was converted into adenosine by CD39 on plasmablasts. Adenosine signaling via A2aR impaired macrophage bactericidal activity and enhanced interleukin-10 production. Septic individuals exhibited expanded CD39hi plasmablasts and adenosine accumulation. Our study reveals CD39hi plasmablasts and adenosine as important drivers of sepsis-induced immunosuppression with relevance in human disease.
Asunto(s)
Adenosina/inmunología , Antígenos CD/inmunología , Apirasa/inmunología , Tolerancia Inmunológica/inmunología , Macrófagos/inmunología , Células Plasmáticas/inmunología , Sepsis/inmunología , Adenosina/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Reprogramación Celular/inmunología , Macrófagos/metabolismo , Ratones , Células Plasmáticas/metabolismo , Receptor de Adenosina A2A/inmunología , Receptor de Adenosina A2A/metabolismo , Sepsis/metabolismoRESUMEN
Allergic airway inflammation is driven by type-2 CD4+ T cell inflammatory responses. We uncover an immunoregulatory role for the nucleotide release channel, Panx1, in T cell crosstalk during airway disease. Inverse correlations between Panx1 and asthmatics and our mouse models revealed the necessity, specificity, and sufficiency of Panx1 in T cells to restrict inflammation. Global Panx1-/- mice experienced exacerbated airway inflammation, and T-cell-specific deletion phenocopied Panx1-/- mice. A transgenic designed to re-express Panx1 in T cells reversed disease severity in global Panx1-/- mice. Panx1 activation occurred in pro-inflammatory T effector (Teff) and inhibitory T regulatory (Treg) cells and mediated the extracellular-nucleotide-based Treg-Teff crosstalk required for suppression of Teff cell proliferation. Mechanistic studies identified a Salt-inducible kinase-dependent phosphorylation of Panx1 serine 205 important for channel activation. A genetically targeted mouse expressing non-phosphorylatable Panx1S205A phenocopied the exacerbated inflammation in Panx1-/- mice. These data identify Panx1-dependent Treg:Teff cell communication in restricting airway disease.
Asunto(s)
Asma/inmunología , Comunicación Celular/inmunología , Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Línea Celular , Proliferación Celular/fisiología , Conexinas/genética , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Sistema Respiratorio/inmunologíaRESUMEN
About 150 post-transcriptional RNA modifications have been identified in all kingdoms of life. During RNA catabolism, most modified nucleosides are resistant to degradation and are released into the extracellular space. In this study, we explored the physiological role of these extracellular modified nucleosides and found that N6-methyladenosine (m6A), widely recognized as an epigenetic mark in RNA, acts as a ligand for the human adenosine A3 receptor, for which it has greater affinity than unmodified adenosine. We used structural modeling to define the amino acids required for specific binding of m6A to the human A3 receptor. We also demonstrated that m6A was dynamically released in response to cytotoxic stimuli and facilitated type I allergy in vivo. Our findings implicate m6A as a signaling molecule capable of activating G protein-coupled receptors (GPCRs) and triggering pathophysiological responses, a previously unreported property of RNA modifications.
Asunto(s)
Adenosina/análogos & derivados , Epigénesis Genética , Procesamiento Postranscripcional del ARN , Receptor de Adenosina A3/metabolismo , Transducción de Señal , Adenosina/genética , Adenosina/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Conejos , Receptor de Adenosina A3/genéticaRESUMEN
Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of â¼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.
Asunto(s)
Adenosina Desaminasa/genética , Adenosina/metabolismo , Inosina/metabolismo , Edición de ARN , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Células A549 , Adenosina/genética , Adenosina Desaminasa/metabolismo , Animales , Emparejamiento Base , Células HEK293 , Humanos , Inosina/genética , Células MCF-7 , Ratones , Células 3T3 NIH , Conformación de Ácido Nucleico , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismoRESUMEN
Severe combined immune deficiency due to adenosine deaminase deficiency (ADA SCID) is an inborn error of immunity with pan-lymphopenia, due to accumulated cytotoxic adenine metabolites. ADA SCID has been treated using gene therapy with a normal human ADA gene added to autologous hematopoietic stem cells (HSC) for over 30 years. Iterative improvements in vector design, HSC processing methods, and clinical HSC transplant procedures have led nearly all ADA SCID gene therapy patients to achieve consistently beneficial immune restoration with stable engraftment of ADA gene-corrected HSC over the duration of observation (as long as 20 years). One gene therapy for ADA SCID is approved by the European Medicines Agency (EMA) in the European Union (EU) and another is being advanced to licensure in the U.S. and U.K. Despite the clear-cut benefits and safety of this curative gene and cell therapy, it remains challenging to achieve sustained availability and access, especially for rare disorders like ADA SCID.
Asunto(s)
Agammaglobulinemia , Trasplante de Células Madre Hematopoyéticas , Inmunodeficiencia Combinada Grave , Humanos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Adenosina Desaminasa/genética , Terapia Genética/métodosRESUMEN
Endonuclease V (EndoV) cleaves the second phosphodiester bond 3' to a deaminated adenosine (inosine). Although highly conserved, EndoV homologs change substrate preference from DNA in bacteria to RNA in eukaryotes. We have characterized EndoV from six different species and determined crystal structures of human EndoV and three EndoV homologs from bacteria to mouse in complex with inosine-containing DNA/RNA hybrid or double-stranded RNA (dsRNA). Inosine recognition is conserved, but changes in several connecting loops in eukaryotic EndoV confer recognition of 3 ribonucleotides upstream and 7 or 8 bp of dsRNA downstream of the cleavage site, and bacterial EndoV binds only 2 or 3 nt flanking the scissile phosphate. In addition to the two canonical metal ions in the active site, a third Mn2+ that coordinates the nucleophilic water appears necessary for product formation. Comparison of EndoV with its homologs RNase H1 and Argonaute reveals the principles by which these enzymes recognize RNA versus DNA.
Asunto(s)
Proteínas Bacterianas/metabolismo , Reparación del ADN , ADN Bacteriano/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Evolución Molecular , Inosina/metabolismo , ARN/metabolismo , Ribonucleasa H/metabolismo , Animales , Proteínas Argonautas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , ADN Bacteriano/química , ADN Bacteriano/genética , Desoxirribonucleasa (Dímero de Pirimidina)/química , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Humanos , Magnesio/metabolismo , Manganeso/metabolismo , Ratones , Conformación de Ácido Nucleico , Conformación Proteica , ARN/química , ARN/genética , Ribonucleasa H/química , Ribonucleasa H/genética , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
Target RNA binding to crRNA-bound type III-A CRISPR-Cas multi-subunit Csm surveillance complexes activates cyclic-oligoadenylate (cAn) formation from ATP subunits positioned within the composite pair of Palm domain pockets of the Csm1 subunit. The generated cAn second messenger in turn targets the CARF domain of trans-acting RNase Csm6, triggering its HEPN domain-based RNase activity. We have undertaken cryo-EM studies on multi-subunit Thermococcus onnurineus Csm effector ternary complexes, as well as X-ray studies on Csm1-Csm4 cassette, both bound to substrate (AMPPNP), intermediates (pppAn), and products (cAn), to decipher mechanistic aspects of cAn formation and release. A network of intermolecular hydrogen bond alignments accounts for the observed adenosine specificity, with ligand positioning dictating formation of linear pppAn intermediates and subsequent cAn formation by cyclization. We combine our structural results with published functional studies to highlight mechanistic insights into the role of the Csm effector complex in mediating the cAn signaling pathway.
Asunto(s)
Nucleótidos de Adenina/química , Proteínas Arqueales/química , Sistemas CRISPR-Cas , Oligorribonucleótidos/química , Ribonucleasas/química , Sistemas de Mensajero Secundario , Thermococcus/química , Nucleótidos de Adenina/metabolismo , Proteínas Arqueales/metabolismo , Microscopía por Crioelectrón , Oligorribonucleótidos/metabolismo , Ribonucleasas/metabolismo , Thermococcus/metabolismo , Thermococcus/ultraestructuraRESUMEN
Type III-A CRISPR-Cas surveillance complexes containing multi-subunit Csm effector, guide, and target RNAs exhibit multiple activities, including formation of cyclic-oligoadenylates (cAn) from ATP and subsequent cAn-mediated cleavage of single-strand RNA (ssRNA) by the trans-acting Csm6 RNase. Our structure-function studies have focused on Thermococcus onnurineus Csm6 to deduce mechanistic insights into how cA4 binding to the Csm6 CARF domain triggers the RNase activity of the Csm6 HEPN domain and what factors contribute to regulation of RNA cleavage activity. We demonstrate that the Csm6 CARF domain is a ring nuclease, whereby bound cA4 is stepwise cleaved initially to ApApApA>p and subsequently to ApA>p in its CARF domain-binding pocket, with such cleavage bursts using a timer mechanism to regulate the RNase activity of the Csm6 HEPN domain. In addition, we establish T. onnurineus Csm6 as an adenosine-specific RNase and identify a histidine in the cA4 CARF-binding pocket involved in autoinhibitory regulation of RNase activity.
Asunto(s)
Nucleótidos de Adenina/química , Proteínas Arqueales/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Oligorribonucleótidos/química , Ribonucleasas/química , Thermococcus/química , Sitios de Unión , Dominios ProteicosRESUMEN
N 1-methyl adenosine (m1A) is a widespread RNA modification present in tRNA, rRNA, and mRNA. m1A modification sites in tRNAs are evolutionarily conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick-Franklin base-pairing and causes mutation and truncation during reverse transcription. Several misincorporation-based high-throughput sequencing methods have been developed to sequence m1A. In this study, we introduce a reduction-based m1A sequencing (red-m1A-seq). We report that NaBH4 reduction of m1A can improve the mutation and readthrough rates using commercially available RT enzymes to give a better positive signature, while alkaline-catalyzed Dimroth rearrangement can efficiently convert m1A to m6A to provide good controls, allowing the detection of m1A with higher sensitivity and accuracy. We applied red-m1A-seq to sequence human small RNA, and we not only detected all the previously reported tRNA m1A sites, but also new m1A sites in mt-tRNAAsn-GTT and 5.8S rRNA.
Asunto(s)
ARN de Transferencia , ARN , Humanos , Metilación , ARN de Transferencia/química , ARN/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo , Metiltransferasas/metabolismo , ARN Mensajero/genéticaRESUMEN
The COVID-19 pandemic reminded us of the urgent need for new antivirals to control emerging infectious diseases and potential future pandemics. Immunotherapy has revolutionized oncology and could complement the use of antivirals, but its application to infectious diseases remains largely unexplored. Nucleoside analogs are a class of agents widely used as antiviral and anti-neoplastic drugs. Their antiviral activity is generally based on interference with viral nucleic acid replication or transcription. Based on our previous work and computer modeling, we hypothesize that antiviral adenosine analogs, like remdesivir, have previously unrecognized immunomodulatory properties which contribute to their therapeutic activity. In the case of remdesivir, we here show that these properties are due to its metabolite, GS-441524, acting as an Adenosine A2A Receptor antagonist. Our findings support a new rationale for the design of next-generation antiviral agents with dual - immunomodulatory and intrinsic - antiviral properties. These compounds could represent game-changing therapies to control emerging viral diseases and future pandemics.
Asunto(s)
Adenosina Monofosfato , Adenosina , Alanina , Antivirales , COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina/química , Humanos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Alanina/química , COVID-19/inmunología , COVID-19/virología , Animales , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Pandemias , Tratamiento Farmacológico de COVID-19 , Chlorocebus aethiops , Replicación Viral/efectos de los fármacos , Células Vero , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Receptor de Adenosina A2A/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virologíaRESUMEN
The purinergic signaling molecule adenosine (Ado) modulates many physiological and pathological functions in the brain. However, the exact source of extracellular Ado remains controversial. Here, utilizing a newly optimized genetically encoded GPCR-Activation-Based Ado fluorescent sensor (GRABAdo), we discovered that the neuronal activity-induced extracellular Ado elevation is due to direct Ado release from somatodendritic compartments of neurons, rather than from the axonal terminals, in the hippocampus. Pharmacological and genetic manipulations reveal that the Ado release depends on equilibrative nucleoside transporters but not the conventional vesicular release mechanisms. Compared with the fast-vesicular glutamate release, the Ado release is slow (~40 s) and requires calcium influx through L-type calcium channels. Thus, this study reveals an activity-dependent second-to-minute local Ado release from the somatodendritic compartments of neurons, potentially serving modulatory functions as a retrograde signal.