Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Res ; 166: 363-376, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29935449

RESUMEN

In this study, the simulations generated by two of the most widely used hydrological basin-scale models, the Annualized Agricultural Non-Point Source (AnnAGNPS) and the Soil and Water Assessment Tool (SWAT), were compared in a Mediterranean watershed, the Carapelle (Apulia, Southern Italy). Input data requirements, time and efforts needed for input preparation, strength and weakness points of each model, ease of use and limitations were evaluated in order to give information to users. Models were calibrated and validated at monthly time scale for hydrology and sediment load using a four year period of observations (streamflow and suspended sediment concentrations). In the driest year, the specific sediment load measured at the outlet was 0.89 t ha-1 yr-1, while the simulated values were 0.83 t ha-1 yr-1 and 1.99 t ha-1 yr-1 for SWAT and AnnAGNPS, respectively. In the wettest year, the specific measured sediment load was 7.45 t ha-1 yr-1, and the simulated values were 8.27 t ha-1 yr-1 and 6.23 t ha-1 yr-1 for SWAT and AnnAGNPS, respectively. Both models showed from fair to a very good correlation between observed and simulated streamflow and satisfactory for sediment load. Results showed that most of the basin is under moderate (1.4-10 t ha-1 yr-1) and high-risk erosion (> 10 t ha-1 yr-1). The sediment yield predicted by the SWAT and AnnAGNPS models were compared with estimates of soil erosion simulated by models for Europe (PESERA and RUSLE2015). The average gross erosion estimated by the RUSLE2015 model (12.5 t ha-1 yr-1) resulted comparable with the average specific sediment yield estimated by SWAT (8.8 t ha-1 yr-1) and AnnAGNPS (5.6 t ha-1 yr-1), while it was found that the average soil erosion estimated by PESERA is lower than the other estimates (1.2 t ha-1 yr-1).


Asunto(s)
Monitoreo del Ambiente , Modelos Teóricos , Ríos , Suelo , Sedimentos Geológicos , Italia , Agua
2.
Sci Total Environ ; 767: 144898, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33550063

RESUMEN

The development of modeling technology to adequately simulate water and pesticide movement within the rice paddy environment faces several challenges. These include: (1) adequately representing ponded conditions; (2) the collection/implementation of temporal/spatial pesticide application data at field scales; (3) the integration of various mixed-landuses simulation schemes. Currently available models do not fully consider these challenges and results may not be sufficiently accurate to represent fate and transport of rice pesticides at watershed scales. Therefore, in this study, an integrated simulation system, "RiceWQ-AnnAGNPS", was developed to fully address these challenges and is illustrated in a California watershed with rice farming practices. The integrated system successfully extends field level simulations to watershed scales while considering the impact of mixed landuses on downstream loadings. Moreover, the system maintains the application information at fine spatial scales and handles varying treated paddy areas via the "split and adjust" approach. The new system was evaluated by investigating the fate and transport of thiobencarb residues in the Colusa Basin, California as a case study. Thiobencarb concentrations in both water and sediment phases were accurately captured by the calibrated RiceWQ model at the edge of field. After spatial upscaling, the integrated system successfully reflected both the seasonal pattern of surface runoff and the timing of monthly thiobencarb loadings. Incorporating future enhancements can further improve model performance by including more detailed water drainage schedules and management practices, improving the accuracy of summer runoff estimations, and incorporating a more sophisticated in-stream process module. This integrated system provides a framework for evaluating rice pesticide impacts as part of a basin level management approach to improve water quality, which can be extended to other rice agrochemicals, or other areas with fine-scale spatial information of pesticide applications.

3.
Heliyon ; 7(11): e08396, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34825097

RESUMEN

Land use changes such as deforestation and urban development influences the river discharge, soil erosion and sediment yield. It is important to evaluate tools which can be used to assess such impacts on water and sediment yield. Therefore, this study evaluated the Annualized Agricultural Non-Point Source Pollutant (AnnAGNPS) model's performance in simulating runoff and sediment loads in Nan Province, Thailand using seven years of continuous monitoring data. The river discharge and sediment yield data from 2011-2013 were used for calibration, and data from 2014-2017 were used for validation. Several input parameters were computed using methods suggested by other researchers and previous studies. In this study, the runoff curve number, soil erodibility factor (K), and RUSLE-C value were used to accurately simulate runoff and sediment loads. The results indicate that the model satisfactorily simulated runoff and sediment loads (R2 = 0.65 and NSE = 0.53 for runoff volume, and R2 = 0.62 and NSE = 0.60 for sediment yields). Moreover, the model estimated the total sediment yield, which contributed 12,932 hundred tons of material to the Nan River in 2017. The maximum sediment yield was obtained below the catchment (Na Noi sub-district, Na Noi district), which corresponds to areas with high crop densities. Cropland generated the highest soil erosion of all investigated land use (87.52% of total soil erosion). Thus, the AnnAGNPS model has the potential to use for investigating management practices to reduce soil erosion and controlling floods and droughts in Nan Province of Thailand.

4.
Water (Basel) ; 11(5): 1-1024, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31583124

RESUMEN

Urbanization can increase sheet, rill, gully, and channel erosion. We quantified the sediment budget of the Los Laureles Canyon watershed (LLCW), which is a mixed rural-urbanizing catchment in Northwestern Mexico, using the AnnAGNPS model and field measurements of channel geometry. The model was calibrated with five years of observed runoff and sediment loads and used to evaluate sediment reduction under a mitigation scenario involving paving roads in hotspots of erosion. Calibrated runoff and sediment load had a mean-percent-bias of 28.4 and - 8.1, and root-mean-square errors of 85% and 41% of the mean, respectively. Suspended sediment concentration (SSC) collected at different locations during one storm-event correlated with modeled SSC at those locations, which suggests that the model represented spatial variation in sediment production. Simulated gully erosion represents 16%-37% of hillslope sediment production, and 50% of the hillslope sediment load is produced by only 23% of the watershed area. The model identifies priority locations for sediment control measures, and can be used to identify tradeoffs between sediment control and runoff production. Paving roads in priority areas would reduce total sediment yield by 30%, but may increase peak discharge moderately (1.6%-21%) at the outlet.

5.
Environ Sci Pollut Res Int ; 26(6): 5934-5943, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30613883

RESUMEN

The continuous deterioration of the aquatic environment in rivers and streams is increasingly causing social and political tensions. To alleviate aquatic environmental problems, especially for the nonpoint source pollution, establishment of riparian forest buffers has been demonstrated as an effective control measure. However, few comprehensive studies of the reduction effects of riparian reforestation on the aquatic environment have been performed, particularly in identifying the suitable widths of reforestation projects. In this paper, the Annualized Agricultural Non-Point Source (AnnAGNPS) model was used to simulate the reduction effects of riparian reforestation on runoff and nutrient loads in Wucun watershed, China. The results showed that 20-m, 40-m, and 60-m widths of riparian buffer reforestation had significant effects on the yearly loads of total nitrogen (TN) and total phosphorus (TP), with reduced rates of 23.21 to 56.2% and 18.16 to 52.14%, respectively. The reduction effect on annual runoff varied from 2.8 to 5.4%. Furthermore, the reduction effect of nutrients performed best during the transition period, while the best runoff reduction was found during the dry period. These distinct reductions indicated that the implementation of riparian forest buffers was capable of reducing the risk and frequency of flooding and eutrophication, especially during the wet and transition periods. Additionally, the 20-m width of riparian buffer reforestation achieved the highest reduction efficiency for runoff, and the 40-m width was the most suitable reforested riparian buffer width for TN and TP. Therefore, 40 m may be the optimum buffer width for the implementation of riparian reforestation in the Wucun watershed. These research results provided scientific information on selecting the optimum buffer width for aquatic environmental regulators and managers as the reduction effects of different widths of riparian buffers on runoff and nutrients were different when considering buffer reforestation.


Asunto(s)
Monitoreo del Ambiente , Agricultura Forestal/métodos , Contaminación del Agua/prevención & control , Agricultura , China , Bosques , Nitrógeno/análisis , Fósforo/análisis , Ríos/química , Contaminación del Agua/estadística & datos numéricos
6.
Geosciences (Basel) ; 8(4): 137, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30147946

RESUMEN

Modelling gully erosion in urban areas is challenging due to difficulties with equifinality and parameter identification, which complicates quantification of management impacts on runoff and sediment production. We calibrated a model (AnnAGNPS) of an ephemeral gully network that formed on unpaved roads following a storm event in an urban watershed (0.2 km2) in Tijuana, Mexico. Latin hypercube sampling was used to create 500 parameter ensembles. Modelled sediment load was most sensitive to the Soil Conservation Service (SCS) curve number, tillage depth (Td), and critical shear stress (τc). Twenty-one parameter ensembles gave acceptable error (behavioural models), though changes in parameters governing runoff generation (SCS curve number, Manning's n) were compensated by changes in parameters describing soil properties (TD, τc, resulting in uncertainty in the optimal parameter values. The most suitable parameter combinations or "behavioural models" were used to evaluate uncertainty under management scenarios. Paving the roads increased runoff by 146-227%, increased peak discharge by 178-575%, and decreased sediment load by 90-94% depending on the ensemble. The method can be used in other watersheds to simulate runoff and gully erosion, to quantify the uncertainty of model-estimated impacts of management activities on runoff and erosion, and to suggest critical field measurements to reduce uncertainties in complex urban environments.

7.
Int J Environ Res Public Health ; 12(9): 10955-73, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26364642

RESUMEN

The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.


Asunto(s)
Monitoreo del Ambiente/métodos , Modelos Teóricos , Movimientos del Agua , Calidad del Agua , Agricultura , Calibración , China , Fertilizantes , Hidrología , Lagos , Nitrógeno/análisis , Fósforo/análisis
8.
Environ Sci Pollut Res Int ; 22(19): 15029-36, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26002368

RESUMEN

Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.


Asunto(s)
Monitoreo del Ambiente , Lagos/química , Lluvia/química , Contaminantes Químicos del Agua/análisis , Análisis de la Demanda Biológica de Oxígeno , China , Modelos Teóricos , Nitrógeno/análisis , Fósforo/análisis
9.
Int J Environ Res Public Health ; 9(5): 1887-907, 2012 05.
Artículo en Inglés | MEDLINE | ID: mdl-22754480

RESUMEN

Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS), have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km(2) Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R(2) of 0.94) and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R(2) of 0.93). Additionally, the model was validated using annual average sediment of 2000-2002 (relative error of -0.34) and 2003-2004 (relative error of 0.18) at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km(-2)·y(-1)). However, 8% of the watershed had soil erosion of exceeding 5,000 t·km(-2)·y(-1). Sloping areas and low coverage areas are the main source of soil loss in the watershed.


Asunto(s)
Sedimentos Geológicos , Modelos Teóricos , Movimientos del Agua , Abastecimiento de Agua , Monitoreo del Ambiente , Ríos , Suelo
10.
Int J Environ Res Public Health ; 8(6): 2181-99, 2011 06.
Artículo en Inglés | MEDLINE | ID: mdl-21776225

RESUMEN

High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricultural Non-Point Source (AnnAGNPS) pollutant loading model was applied to the Ohio Upper Auglaize watershed, located in the southern portion of the Maumee River Basin. In this study, the AnnAGNPS model was calibrated using USGS monitored data; and then the effects of different phosphorus fertilization rates on phosphorus loadings were assessed. It was found that P loadings increase as fertilization rate increases, and long term higher P application would lead to much higher P loadings to the watershed outlet. The P loadings to the watershed outlet have a dramatic change after some time with higher P application rate. This dramatic change of P loading to the watershed outlet indicates that a "critical point" may exist in the soil at which soil P loss to water changes dramatically. Simulations with different initial soil P contents showed that the higher the initial soil P content is, the less time it takes to reach the "critical point" where P loadings to the watershed outlet increases dramatically. More research needs to be done to understand the processes involved in the transfer of P between the various stable, active and labile states in the soil to ensure that the model simulations are accurate. This finding may be useful in setting up future P application and management guidelines.


Asunto(s)
Monitoreo del Ambiente/métodos , Fósforo/análisis , Agricultura , Agua Dulce , Sistemas de Información Geográfica , Humanos , Ohio , Suelo/química , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA