Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Med Sci ; 18(7): 1680-1686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746584

RESUMEN

Background: Anti-stress capacity is important to resist the occurrence of adverse events. To observe the effects of exercise, trimetazidine alone or combined on the anti-stress capacity of mice, and further explore its potential mechanism. Methods: Forty-four C57BL/6 male mice aged 8 weeks were randomly divided into four groups (n=11 for each group): control group (group C), exercise group (group E), trimetazidine group (group T), exercise combined with trimetazidine group (group TE). After the intervention, each group was randomly subdivided into the exhaustive exercise (EE, n=6) and the non-EE (n=5) subgroups. The mice in the EE-subgroup underwent EE. Mice were sacrificed 12 hours later after EE. The myocardial ultrastructure and autophagosomes were observed under an electron microscope. The expression of autophagy-related proteins: BNIP3, LC3-II, and P62 were analyzed and the heat shock protein 70 mRNA transcription and protein expression were also investigated. Results: Exercise or trimetazidine increased the expression of BNIP3, LC3-II, and heat shock protein 70, decreased the expression of P62 pre- and post-EE while the combination has the synergistic effect. Conclusion: Exercise and trimetazidine, alone or combined enhanced the anti-stress capacity of mice significantly. The underlying mechanism may be associated with the promotion of autography and the expression of heat shock protein 70.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Estrés Fisiológico , Trimetazidina/administración & dosificación , Adaptación Fisiológica/efectos de los fármacos , Animales , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Proteínas HSP70 de Choque Térmico/metabolismo , Corazón/efectos de los fármacos , Corazón/fisiopatología , Humanos , Masculino , Ratones , Microscopía Electrónica , Miocardio/metabolismo , Miocardio/patología , Miocardio/ultraestructura , Condicionamiento Físico Animal/fisiología
2.
J Invertebr Pathol ; 181: 107564, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33689762

RESUMEN

Beauveria bassiana is a critical entomopathogenic fungus for pest biocontrol, whose efficiency depends on fungal development and stress resistance. Unlike its revealed location in plasma membrane patches in other organisms, B. bassiana Sur7 specifically localized in vacuoles. This vacuolar Sur7 was previously demonstrated to affect stress tolerance, hyphal development and virulence. There, however, remain more mechanistic details to be explored. In this study, transcriptomics and metabolomics were applied to investigate the mechanism of vacuolar Sur7. Analyses of transcriptomics and metabolomics displayed many differentially expressed genes and abundant metabolites in response to Sur7 loss, respectively. Together with genes associated with vacuolar biofunction (including transportation and hydrolysis), the altered metabolites contributed to cell wall construction and stress resistance. Particularly, an N-acetylglucosamine-associated Brg1/Nrg1 pathway was enriched and partially affected by Sur7. Absence of Sur7 changed the expression level of Brg1/Nrg1 pathway-related transcript factors, which interfered with downstream phenotype of sporulation. In addition, Sur7 was involved in the accumulation of sphingoid bases, which may affect sphingolipid-related signaling pathway. Although experimental evidence is further required, our studies provide a preliminary framework for future exploring the regulatory mechanism of Sur7, and give a new version of metabolic agency connecting Sur7 and downstream signaling pathway.


Asunto(s)
Beauveria/genética , Agentes de Control Biológico , Proteínas Fúngicas/genética , Proteínas de la Membrana/genética , Metaboloma , Transcriptoma , Beauveria/metabolismo , Agentes de Control Biológico/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Control Biológico de Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA