Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 912, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350014

RESUMEN

BACKGROUND: Hygienic behavior, a specialized form of immune response evolved in social insects, plays a crucial role in safeguarding colonies from disease spread. In honeybee colonies, such behavior typically entails the dual steps of uncapping and removal of unhealthy and deceased brood. Although in recent years, numerous studies have examined the development of hygienic behavior, the mechanisms underlying the division in the performance of uncapping and removal have yet to be sufficiently elucidated. In this regard, long non-coding RNAs (lncRNAs) have been evidenced to be engaged in regulating the physiological activities of honeybees; however, whether lncRNAs are likewise involved in the uncapping and removal tasks has not been clarified. RESULTS: In this study, the strong hygienic Apis cerana worker bees were used and the processes of uncapping and removal behaviors in three colonies were assayed with freeze-killed brood in the field. We then sequenced the antennal RNAs of honeybees to identify differentially expressed lncRNAs and performed lncRNA-mRNA association analysis to establish the differences between uncapping and removal. We detected 1,323 differentially expressed lncRNAs in the antennae, and the findings of lncRNA-mRNA association analyses revealed that the target genes of differentially expressed lncRNAs between uncapping and removal worker bees were predominantly linked to response to stimulus, receptor activity, and synapse. Notably, among the lncRNAs enriched in cellular response to stimulus, XR_001766094.2 was exclusively expressed in the uncapping worker bees. Based on these findings, we hypothesize that XR_001766094.2 plays a key role in distinguishing uncapping from removal behaviors by responding to external stimulus, thereby suggesting that the division of hygienic behaviors is governed by differential thresholds of responsiveness to environmental cues. CONCLUSION: We characterized differences in the uncapping and removal behaviors of worker bees from a perspective of lncRNAs. Uncapping bees may be equipped with a more rapid stimulatory response and more acute olfactory sensitivity, contributing to the rapid hygienic behavior in honeybee colonies. Our results thus establish a foundation for potential lncRNA-mediated gene expression regulation in hygienic behavior.


Asunto(s)
Conducta Animal , ARN Largo no Codificante , Animales , Abejas/genética , Abejas/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Antenas de Artrópodos/metabolismo , Perfilación de la Expresión Génica
2.
Mol Ecol ; 33(13): e17414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801184

RESUMEN

Elucidating the evolutionary processes that drive population divergence can enhance our understanding of the early stages of speciation and inform conservation management decisions. The honeybee Apis cerana displays extensive population divergence, providing an informative natural system for exploring these processes. The mainland lineage A. cerana includes several peripheral subspecies with disparate ecological and geographical settings radiated from a central ancestor. Under this evolutionary framework, we can explore the patterns of genome differentiation and the evolutionary models that explain them. We can also elucidate the contribution of non-genomic spatiotemporal mechanisms (extrinsic features) and genomic mechanisms (intrinsic features) that influence these genomic differentiation landscapes. Based on 293 whole genomes, a small part of the genome is highly differentiated between central-peripheral subspecies pairs, while low and partial parallelism partly reflects idiosyncratic responses to environmental differences. Combined elements of recurrent selection and speciation-with-gene-flow models generate the heterogeneous genome landscapes. These elements weight differently between central-island and other central-peripheral subspecies pairs, influenced by glacial cycles superimposed on different geomorphologies. Although local recombination rates exert a significant influence on patterns of genomic differentiation, it is unlikely that low-recombination rates regions were generated by structural variation. In conclusion, complex factors including geographical isolation, divergent ecological selection and non-uniform genome features have acted concertedly in the evolution of reproductive barriers that could reduce gene flow in part of the genome and facilitate the persistence of distinct populations within mainland lineage of A. cerana.


Asunto(s)
Flujo Génico , Genética de Población , Abejas/genética , Abejas/clasificación , Animales , Especiación Genética , Geografía , Selección Genética , Variación Genética , Genómica
3.
Arch Insect Biochem Physiol ; 115(3): e22104, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506277

RESUMEN

As a common defense mechanism in Hymenoptera, bee venom has complex components. Systematic and comprehensive analysis of bee venom components can aid in early evaluation, accurate diagnosis, and protection of organ function in humans in cases of bee stings. To determine the differences in bee venom composition and metabolic pathways between Apis cerana and Apis mellifera, proton nuclear magnetic resonance (1 H-NMR) technology was used to detect the metabolites in venom samples. A total of 74 metabolites were identified and structurally analyzed in the venom of A. cerana and A. mellifera. Differences in the composition and abundance of major components of bee venom from A. cerana and A. mellifera were mapped to four main metabolic pathways: valine, leucine and isoleucine biosynthesis; glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; and the tricarboxylic acid cycle. These findings indicated that the synthesis and metabolic activities of proteins or polypeptides in bee venom glands were different between A. cerana and A. mellifera. Pyruvate was highly activated in 3 selected metabolic pathways in A. mellifera, being much more dominant in A. mellifera venom than in A. cerana venom. These findings indicated that pyruvate in bee venom glands is involved in various life activities, such as biosynthesis and energy metabolism, by acting as a precursor substance or intermediate product.


Asunto(s)
Venenos de Abeja , Himenópteros , Mordeduras y Picaduras de Insectos , Humanos , Abejas , Animales , Ácido Pirúvico , Espectroscopía de Resonancia Magnética
4.
Appl Microbiol Biotechnol ; 108(1): 261, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472661

RESUMEN

Non-coding RNA (ncRNA) plays a vital part in the regulation of immune responses, growth, and development in plants and animals. Here, the identification, characteristic analysis, and molecular verification of circRNAs in Apis cerana cerana worker larval guts were conducted, followed by in-depth investigation of the expression pattern of larval circRNAs during Ascosphaera apis infection and exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 3178 circRNAs in the larval guts of A. c. cerana were identified, with a length distribution ranging from 15 to 96,007 nt. Additionally, 155, 95, and 86 DEcircRNAs were identified in the in the 4-, 5-, and 6-day-old larval guts following A. apis infection. These DEcircRNAs were predicted to target 29, 25, and 18 parental genes relevant to 12, 20, and 17 GO terms as well as 144, 114, and 61 KEGG pathways, including 5 cellular and 4 humoral immune pathways. Complex competing endogenous RNA (ceRNA) regulatory networks were detected as being formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The target DEmRNAs were engaged in 36, 47, and 47 GO terms as well as 331, 332, and 331 pathways, including 6 cellular and 6 humoral immune pathways. Further, 19 DEcircRNAs, 5 DEmiRNAs, and 3 mRNAs were included in the sub-networks relative to 3 antioxidant enzymes. Finally, back-splicing sites within 15 circRNAs and the difference in the 15 DEcircRNAs' expression between uninoculated and A. apis-inoculated larval guts were confirmed based on molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. c. cerana larvae against A. apis invasion. KEY POINTS: • The expression pattern of circRNAs was altered in the A. cerana worker larval guts following A. apis infection. • Back-splicing sites within 15 A. cerana circRNAs were verified using molecular approaches. DEcircRNAs potentially modulated immune responses and antioxidant enzymes in A. apis-challenged host guts.


Asunto(s)
MicroARNs , Micosis , Abejas/genética , Animales , Larva/microbiología , ARN Circular/genética , Antioxidantes , ARN/genética , MicroARNs/genética
5.
Pestic Biochem Physiol ; 202: 105890, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879289

RESUMEN

Cytochrome P450 plays a crucial role in regulating insect growth, development, and resisting a variety of stresses. Insect metamorphosis and response to external stress are altered by deleting CYP450 genes. In this study, we identified and analyzed a novel gene of CYP450 family, AccCYP6A13, from Apis cerana cerana, and explored its role in the response of Apis cerana cerana to adverse external stressors. It was found that the expression of AccCYP6A13 was spatiotemporal specificity. The expression level increased with age and reached its highest value in the adult stage. The primarily expressiong location were legs, brain, and epidermis of honeybees. Stress conditions can affect the expression of AccCYP6A13 depending on treatment times. RNA interference experiments have shown that knocking down AccCYP6A13 reduces antioxidant activity and deactivates detoxification enzymes, resulting in oxidative damage accumulation and a decline in detoxification capability in bees, as well as inhibiting numerous antioxidant genes. Additionally, knockdown of the AccCYP6A13 gene in Apis cerana cerana resulted in increased sensitivity to pesticides and increased mortality when treated with neonicotinoid pesticides such as thiamethoxam. AccCYP6A13 overexpression in a prokaryotic system further confirmed its role in resistance to oxidative stress. To summarize, AccCYP6A13 may play an essential role in the normal development and response to environmental stress in Apis cerana cerana. Furthermore, this study contributed to the theoretical understanding of bee resistance biology.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Proteínas de Insectos , Estrés Fisiológico , Animales , Abejas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Estrés Fisiológico/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insecticidas/toxicidad , Tiametoxam , Interferencia de ARN , Neonicotinoides/toxicidad , Estrés Oxidativo
6.
J Sci Food Agric ; 104(1): 225-234, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549225

RESUMEN

BACKGROUND: Environmental stress can induce oxidative stress in Apis cerana cerana, leading to cellular oxidative damage, reduced vitality, and even death. Currently, owing to an incomplete understanding of the molecular mechanisms by which A. cerana cerana resists oxidative damage, there is no available method to mitigate the risk of this type of damage. Cyclin plays an important role in cell stress resistance. The aim of this study was to explore the in vivo protection of cyclin H against oxidative damage induced by abiotic stress in A. cerana cerana and clarify the mechanism of action. We isolated and identified the AccCyclin H gene in A. cerana cerana and analysed its responses to different exogenous stresses. RESULTS: The results showed that different oxidative stressors can induce or inhibit the expression of AccCyclin H. After RNA-interference-mediated AccCyclin H silencing, the activity of antioxidant-related genes and related enzymes was inhibited, and trehalose metabolism was reduced. AccCyclin H gene silencing reduced A. cerana cerana high-temperature tolerance. Exogenous trehalose supplementation enhanced the total antioxidant capacity of A. cerana cerana, reduced the accumulation of oxidants, and improved the viability of A. cerana cerana under high-temperature stress. CONCLUSION: Our findings suggest that trehalose can alleviate adverse stress and that AccCyclin H may participate in oxidative stress reactions by regulating trehalose metabolism. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Trehalosa , Animales , Abejas/genética , Antioxidantes/metabolismo , Estrés Oxidativo , Estrés Fisiológico , Interferencia de ARN , Proteínas de Insectos/química
7.
BMC Genomics ; 24(1): 100, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879226

RESUMEN

BACKGROUND: Apis cerana is widely distributed in China and, prior to the introduction of western honeybees, was the only bee species kept in China. During the long-term natural evolutionary process, many unique phenotypic variations have occurred among A. cerana populations in different geographical regions under varied climates. Understanding the molecular genetic basis and the effects of climate change on the adaptive evolution of A. cerana can promote A. cerana conservation in face of climate change and allow for the effective utilization of its genetic resources. RESULT: To investigate the genetic basis of phenotypic variations and the impact of climate change on adaptive evolution, A. cerana workers from 100 colonies located at similar geographical latitudes or longitudes were analyzed. Our results revealed an important relationship between climate types and the genetic variation of A. cerana in China, and a greater influence of latitude compared with longitude was observed. Upon selection and morphometry analyses combination for populations under different climate types, we identified a key gene RAPTOR, which was deeply involved in developmental processes and influenced the body size. CONCLUSION: The selection of RAPTOR at the genomic level during adaptive evolution could allow A. cerana to actively regulate its metabolism, thereby fine-tuning body sizes in response to harsh conditions caused by climate change, such as food shortages and extreme temperatures, which may partially elucidate the size differences of A. cerana populations. This study provides crucial support for the molecular genetic basis of the expansion and evolution of naturally distributed honeybee populations.


Asunto(s)
Aclimatación , Cambio Climático , Abejas/genética , Animales , China , Tamaño Corporal , Genómica
8.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38049374

RESUMEN

The adult worker bees were fed sucrose syrup or sucrose syrup supplemented with Lactobacillus helveticus KM7, prebiotic isomalto-oligosaccharide (IMO), or L. helveticus KM7 combined with IMO. Survival rate, gut microbiota, and gene expression of gut antimicrobial peptides in worker honey bees were determined. Administration of L. helveticus KM7 and IMO significantly increased the survival rate in worker bees relative to bees fed sucrose only. Then, higher concentration of both lactic acid bacteria and Bifidobacterium in the gut and lower counts of gut fungi, Enterococcus, and Bacteroides-Porphyromonas-Prevotella were observed in bees fed the combination of KM7 and IMO compared with control bees. The combination of L. helveticus KM7 with IMO showed a greater or comparable modulating effect on those bacteria relative to either KM7 or IMO alone. Furthermore, the combination treatment of L. helveticus KM7 and IMO enhanced mRNA expression of antimicrobial peptide genes, including Abaecin, Defensin, and the gene encoding prophenoloxidase (PPO) in the gut compared with both control bees and those either L. helveticus KM7 or IMO alone. These results suggest that the combination of L. helveticus KM7 and IMO synergistically modifies the gut microbiota and immunity and consequently improves the survival rate of Apis cerana adult workers.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus helveticus , Abejas , Animales , Microbioma Gastrointestinal/genética , Bacterias , Sacarosa , Inmunidad
9.
Pestic Biochem Physiol ; 194: 105483, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532314

RESUMEN

Pesticide pollution is one of the most important factors for global bee declines. Despite many studies have revealed that the most important Chinese indigenous species,Apis cerana, is presenting a high risk on exposure to neonicotinoids, the toxicology information on Apis cerana remain limited. This study was aimed to determine the acute and chronic toxic effects of thiacloprid (IUPAC name: {(2Z)-3-[(6-Chloro-3-pyridinyl)methyl]-1,3-thiazolidin-2-ylidene}cyanamide) on behavioral and physiological performance as well as genome-wide transcriptome in A. cerana. We found the 1/5 LC50 of thiacloprid significantly impaired learning and memory abilities after both acute and chronic exposure, nevertheless, has no effects on the sucrose responsiveness and phototaxis climbing ability of A. cerana. Moreover, activities of detoxification enzyme P450 monooxygenases and CarE were increased by short-term exposure to thiacloprid, while prolonged exposure caused suppression of CarE activity. Neither acute nor chronic exposure to thiacloprid altered honey bee AChE activities. To further study the potential defense molecular mechanisms in Asian honey bee under pesticide stress, we analyzed the transcriptomes of honeybees in response to thiacloprid stress. The transcriptomic profiles revealed consistent upregulation of immune- and stress-related genes by both acute or chronic treatments. Our results suggest that the chronic exposure to thiacloprid produced greater toxic effects than a single administration to A. cerana. Altogether, our study deepens the understanding of the toxicological characteristic of A. cerana against thiacloprid, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.


Asunto(s)
Abejas , Insecticidas , Neonicotinoides , Tiazinas , Animales , Abejas/genética , Abejas/metabolismo , Abejas/fisiología , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Tiazinas/toxicidad , Pruebas de Toxicidad Subaguda , Pruebas de Toxicidad Crónica , China , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Estrés Fisiológico/genética
10.
Pestic Biochem Physiol ; 195: 105540, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666611

RESUMEN

Heavy metals and pesticides represent prominent sources of pollution in the natural habitat of Apis cerana cerana, potentially endangering their health through the induction of oxidative stress reactions. This study aimed to address this issue by isolating AccCDK2-like and AccCINP-like proteins from Apis cerana cerana and investigating their functional roles in honey bee resistance against pesticide and heavy metal stresses. Bioinformatics analysis revealed significant homology of these proteins with those found in other species. Functional studies confirmed their participation in interaction with each other, alongside demonstrating distinct patterns of expression and localization. Specifically, AccCDK2-like exhibited higher expression levels in prepupae and muscle tissues, while AccCINP-like showed maximal expression in brown pupae and abdomen. Furthermore, the expression levels of these proteins were found to be modulated in response to pesticide and heavy metal stresses. Notably, overexpression of AccCDK2-like and AccCINP-like led to a noticeable alteration in E. coli's ability to withstand external stresses. Additionally, silencing of the AccCDK2-like and AccCINP-like genes resulted in a significant reduction in antioxidant enzyme activity and the expression levels of genes related to antioxidant function. Consequently, the mortality rate of Apis cerana cerana under pesticide and heavy metal stresses conspicuously increased. Hence, our findings suggest that AccCDK2-like and AccCINP-like proteins potentially play a crucial role in the response of Apis cerana cerana to pesticide and heavy metal stress, likely by modulating the antioxidant pathway.


Asunto(s)
Metales Pesados , Plaguicidas , Animales , Abejas/genética , Plaguicidas/toxicidad , Antioxidantes , Escherichia coli , Biología Computacional , Metales Pesados/toxicidad
11.
Pestic Biochem Physiol ; 192: 105419, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105625

RESUMEN

Glyphosate is an herbicide commonly used in agriculture, and its widespread use has adversely affected the survival of nontarget organisms. Among these organisms, bees in particular are important pollinators, and declining bee populations have severely affected crop yields around the world. However, the molecular mechanism by which glyphosate harms bees remains unclear. In our experiment, we screened and cloned a glyphosate-induced gene in Apis cerana cerana (A. c. cerana) and named glyphosate response factor 1 (AccGRF1). Sequence analysis showed that AccGRF1 contains a winged-helix DNA binding domain, which suggests that it belongs to the Forkhead box (Fox) protein family. qRT-PCR and heterologous expression in Escherichia coli and yeast showed that AccGRF1 can respond to glyphosate and oxidative stress. After AccGRF1 knockdown by means of RNA interference (RNAi), the resistance of A. c. cerana to glyphosate stress improved. The results suggested that AccGRF1 is involved in A. c. cerana glyphosate stress tolerance. This study reveals the functions of Fox transcription factors in response to glyphosate stress and provides molecular insights into the regulation of glyphosate responses in honeybees.


Asunto(s)
Glicina , Estrés Oxidativo , Abejas/genética , Animales , Estrés Oxidativo/genética , Interferencia de ARN , Glicina/toxicidad , Proteínas de Insectos/metabolismo , Glifosato
12.
Pestic Biochem Physiol ; 190: 105333, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36740341

RESUMEN

Apis cerana cerana is a native bee species in China and plays a key role in agricultural production and ecological balance. However, the growth and development of Apis cerana cerana has not been smooth, and pesticide and heavy metal stress are key factors that have forced a dramatic decline in population size. This study was performed with the objective of investigating the role of AccCDK20 and AccCDKN1 in honey bee resistance to pesticide and heavy metal stress. RT-qPCR analysis revealed that AccCDK20 transcript levels were highest in brown-eyed pupae and AccCDKN1 transcript levels were highest in 1-day-old worker bees. In different tissues and body parts of adult bees, AccCDK20 transcript levels were highest in the head, and AccCDKN1 transcript levels were highest in the thorax. It was further observed that environmental stress can affect the transcript levels of the AccCDK20 and AccCDKN1 genes. Silencing of the AccCDK20 and AccCDKN1 genes resulted in altered activities of antioxidant-related genes and antioxidant-related enzymes. AccCDK20 and AccCDKN1 transcript levels were upregulated under glyphosate stress, and silencing of the genes resulted in reduced resistance to glyphosate and greatly increased mortality in Apis cerana cerana. In addition, gene function was verified by in vitro repression assays. Overexpression of the AccCDK20 and AccCDKN1 proteins in E. coli cells increased the resistance to ROS damage induced by CHP. In conclusion, AccCDK20 and AccCDKN1 play an indispensable role in honey bee resistance to pesticide and heavy metal stress.


Asunto(s)
Plaguicidas , Abejas/genética , Animales , Plaguicidas/toxicidad , Antioxidantes , Escherichia coli , Estrés Fisiológico/genética , China
13.
Pestic Biochem Physiol ; 191: 105377, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963945

RESUMEN

Insect cytochrome P450 monooxygenases (P450s or CYPs) perform important functions in the metabolic detoxification of both endogenous and exogenous substrates. However, the mechanism of action of the P450 genes in bees is unclear. In this study, we investigated the effects of AccCYP6k1 on the metabolism and detoxification of Apis cerana cerana. Spatiotemporal expression profiling revealed that the expression of AccCYP6k1 was the highest in foragers (A15) and was mainly expressed in the leg, midgut and head. RT-qPCR results showed that AccCYP6k1 exhibited different expression patterns following exposure to xenobiotics. In addition, silencing AccCYP6k1 increased the pesticides sensitivity and affected the detoxification system and antioxidant process of A. cerana cerana. In brief, the induced expression of AccCYP6k1 is related to the resistance of A. cerana cerana, while knockdown AccCYP6k1 affect the pesticides resistance and metabolic detoxification system of A. cerana cerana. These findings not only support the theoretical basis of metabolic detoxification in bees but also provide a better understanding of P450-mediated resistance to pesticides in insects.


Asunto(s)
Antioxidantes , Plaguicidas , Abejas/genética , Animales , Interferencia de ARN , Estrés Oxidativo/genética , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética
14.
Pestic Biochem Physiol ; 191: 105372, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963941

RESUMEN

Tyrosine aminotransferase (TATN) is the first enzyme involved in the metabolic degradation of tyrosine, and it plays an important role in tyrosine detoxification and helps the body resist oxidative damage. However, the function of TATN in Apis cerana cerana (A. c. cerana) remains unclear. To explore the role of TATN in the response to pesticide and heavy metal stress in A. c. cerana, AccTATN was isolated and identified. AccTATN was highly expressed in the integument and the adult stage. Exposure to multiple pesticides and heavy metal stress upregulated AccTATN expression. RNA interference experiments showed that silencing AccTATN reduced the resistance of A. c. cerana to glyphosate and avermectins stress. The expression of antioxidant-related genes and the activity of antioxidant enzymes were reduced after AccTATN was silenced, leading to the accumulation of oxidative damage. Overexpression of the recombinant AccTATN protein in a prokaryotic system also confirmed its role in heavy metal stress and improved antioxidant capacity. Our study showed that AccTATN may promote resistance to pesticide and heavy metal stress by regulating the antioxidant capacity of A. c. cerana. This study provides a valuable theoretical basis for A. c. cerana conservation.


Asunto(s)
Antioxidantes , Plaguicidas , Abejas/genética , Animales , Antioxidantes/metabolismo , Tirosina Transaminasa/genética , Tirosina Transaminasa/metabolismo , Plaguicidas/toxicidad , Estrés Oxidativo/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico/genética , Proteínas de Insectos/metabolismo
15.
J Insect Sci ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695003

RESUMEN

Temperature and humidity are important factors affecting the honeybees physiological metabolism. When honeybees are stressed by high temperature and high humidity, various physiological stress mechanisms evolved by bees are activated in response to injury. The accumulation of some sugars, polyols, and free amino acids can effectively protect cell structure stability and resist temperature stress. In this study, the changes of glucose, trehalose, cholesterol, sorbitol, sorbitol dehydrogenase, mannitol, and free amino acids content of worker honeybees [Apis cerana cerana Fabricius and Apis mellifera Ligustica (Hymenoptera: Apidae)] under different temperature and humidity conditions were measured. Our research results show that high temperature has an important impact on the metabolism of honeybees. Heat stress can cause the accumulation of various antistress substances in worker. The contents of sugars, polyols, and some free amino acids accumulated in high temperature were significantly higher than those in the control, while the influence of high humidity was less. Although high humidity was improved compared with the control, the difference was not obvious. It provides a theoretical basis for exploring the physiological mechanism of individual heat resistance of honeybees.


Asunto(s)
Himenópteros , Abejas , Animales , Temperatura , Aminoácidos , Azúcares , Humedad
16.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982426

RESUMEN

There is a growing risk of pollinators being exposed to multiple fungicides due to the widespread use of fungicides for plant protection. A safety assessment of honeybees exposed to multiple commonly used fungicides is urgently required. Therefore, the acute oral toxicity of the ternary mixed fungicide of ABP (azoxystrobin: boscalid: pyraclostrobin = 1:1:1, m/m/m) was tested on honeybees (Apis cerana cerana), and its sublethal effect on foragers' guts was evaluated. The results showed that the acute oral median lethal concentration (LD50) of ABP for foragers was 12.6 µg a.i./bee. ABP caused disorder of the morphological structure of midgut tissue and affected the intestinal metabolism; the composition and structure of the intestinal microbial community was perturbed, which altered its function. Moreover, the transcripts of genes involved in detoxification and immunity were strongly upregulated with ABP treatment. The study implies that exposure to a fungicide mixture of ABP can cause a series of negative effects on the health of foragers. This work provides a comprehensive understanding of the comprehensive effects of common fungicides on non-target pollinators in the context of ecological risk assessment and the future use of fungicides in agriculture.


Asunto(s)
Fungicidas Industriales , Microbioma Gastrointestinal , Abejas , Animales , Fungicidas Industriales/toxicidad
17.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895079

RESUMEN

Long non-coding RNAs (lncRNAs) are crucial modulators in a variety of biological processes, such as gene expression, development, and immune defense. However, little is known about the function of lncRNAs in the development of Asian honey bee (Apis cerana) larval guts. Here, on the basis of our previously obtained deep-sequencing data from the 4-, 5-, and 6-day-old larval guts of A. cerana workers (Ac4, Ac5, and Ac6 groups), an in-depth transcriptome-wide investigation was conducted to decipher the expression pattern, regulatory manners, and potential roles of lncRNAs during the developmental process of A. cerana worker larval guts, followed by the verification of the relative expression of differentially expressed lncRNAs (DElncRNAs) and the targeting relationships within a competing endogenous RNA (ceRNA) axis. In the Ac4 vs. Ac5 and Ac5 vs. Ac6 comparison groups, 527 and 498 DElncRNAs were identified, respectively, which is suggestive of the dynamic expression of lncRNAs during the developmental process of larval guts. A cis-acting analysis showed that 330 and 393 neighboring genes of the aforementioned DElncRNAs were respectively involved in 29 and 32 functional terms, such as cellular processes and metabolic processes; these neighboring genes were also respectively engaged in 246 and 246 pathways such as the Hedgehog signaling pathway and the Wnt signaling pathway. Additionally, it was found that 79 and 76 DElncRNAs as potential antisense lncRNAs may, respectively, interact with 72 and 60 sense-strand mRNAs. An investigation of competing endogenous RNA (ceRNA) networks suggested that 75 (155) DElncRNAs in the Ac4 vs. Ac5 (Ac5 vs. Ac6) comparison group could target 7 (5) DEmiRNAs and further bind to 334 (248) DEmRNAs, which can be annotated to 33 (29) functional terms and 186 (210) pathways, including 12 (16) cellular- and humoral-immune pathways (lysosome pathway, necroptosis, MAPK signaling pathway, etc.) and 11 (10) development-associated signaling pathways (Wnt, Hippo, AMPK, etc.). The RT-qPCR detection of five randomly selected DElncRNAs confirmed the reliability of the used sequencing data. Moreover, the results of a dual-luciferase reporter assay were indicative of the binding relationship between MSTRG.11294.1 and miR-6001-y and between miR-6001-y and ncbi_107992440. These results demonstrate that DElncRNAs are likely to modulate the developmental process of larval guts via the regulation of the source genes' transcription, interaction with mRNAs, and ceRNA networks. Our findings not only yield new insights into the developmental mechanism underlying A. cerana larval guts, but also provide a candidate ceRNA axis for further functional dissection.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Abejas/genética , Animales , Larva/genética , Larva/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Hedgehog/genética , Reproducibilidad de los Resultados , ARN Mensajero/genética , Redes Reguladoras de Genes , MicroARNs/genética
18.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982959

RESUMEN

Long noncoding RNAs (lncRNAs) are pivotal regulators in gene expression and diverse biological processes, such as immune defense and host-pathogen interactions. However, little is known about the roles of lncRNAs in the response of the Asian honey bee (Apis cerana) to microsporidian infestation. Based on our previously obtained high-quality transcriptome datasets from the midgut tissues of Apis cerana cerana workers at 7 days post inoculation (dpi) and 10 dpi with Nosema ceranae (AcT7 and AcT10 groups) and the corresponding un-inoculated midgut tissues (AcCK7 and AcCK10 groups), the transcriptome-wide identification and structural characterization of lncRNAs were conducted, and the differential expression pattern of lncRNAs was then analyzed, followed by investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in host response. Here, 2365, 2322, 2487, and 1986 lncRNAs were, respectively, identified in the AcCK7, AcT7, AcCK7, and AcT10 groups. After removing redundant ones, a total of 3496 A. c. cerana lncRNAs were identified, which shared similar structural characteristics with those discovered in other animals and plants, such as shorter exons and introns than mRNAs. Additionally, 79 and 73 DElncRNAs were screened from the workers' midguts at 7 dpi and 10 dpi, respectively, indicating the alteration of the overall expression pattern of lncRNAs in host midguts after N. ceranae infestation. These DElncRNAs could, respectively, regulate 87 and 73 upstream and downstream genes, involving a suite of functional terms and pathways, such as metabolic process and Hippo signaling pathway. Additionally, 235 and 209 genes co-expressed with DElncRNAs were found to enrich in 29 and 27 terms, as well as 112 and 123 pathways, such as ABC transporters and the cAMP signaling pathway. Further, it was detected that 79 (73) DElncRNAs in the host midguts at 7 (10) dpi could target 321 (313) DEmiRNAs and further target 3631 (3130) DEmRNAs. TCONS_00024312 and XR_001765805.1 were potential precursors for ame-miR-315 and ame-miR-927, while TCONS_00006120 was the putative precursor for both ame-miR-87-1 and ame-miR-87-2. These results together suggested that DElncRNAs are likely to play regulatory roles in the host response to N. ceranae infestation through the regulation of neighboring genes via a cis-acting effect, modulation of co-expressed mRNAs via trans-acting effect, and control of downstream target genes' expression via competing endogenous RNA networks. Our findings provide a basis for disclosing the mechanism underlying DElncRNA-mediated host N. ceranae response and a new perspective into the interaction between A. c. cerana and N. ceranae.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Abejas/genética , Animales , ARN Largo no Codificante/genética , Interacciones Huésped-Patógeno/genética , ARN Mensajero , Transcriptoma
19.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047210

RESUMEN

Sacbrood virus (SBV) is a significant problem that impedes brood development in both eastern and western honeybees. Whole-genome sequencing has become an important tool in researching population genetic variations. Numerous studies have been conducted using multiple techniques to suppress SBV infection in honeybees, but the genetic markers and molecular mechanisms underlying SBV resistance have not been identified. To explore single nucleotide polymorphisms (SNPs), insertions, deletions (Indels), and genes at the DNA level related to SBV resistance, we conducted whole-genome resequencing on 90 Apis cerana cerana larvae raised in vitro and challenged with SBV. After filtering, a total of 337.47 gigabytes of clean data and 31,000,613 high-quality SNP loci were detected in three populations. We used ten databases to annotate 9359 predicted genes. By combining population differentiation index (FST) and nucleotide polymorphisms (π), we examined genome variants between resistant (R) and susceptible (S) larvae, focusing on site integrity (INT < 0.5) and minor allele frequency (MAF < 0.05). A selective sweep analysis with the top 1% and top 5% was used to identify significant regions. Two SNPs on the 15th chromosome with GenBank KZ288474.1_322717 (Guanine > Cytosine) and KZ288479.1_95621 (Cytosine > Thiamine) were found to be significantly associated with SBV resistance based on their associated allele frequencies after SNP validation. Each SNP was authenticated in 926 and 1022 samples, respectively. The enrichment and functional annotation pathways from significantly predicted genes to SBV resistance revealed immune response processes, signal transduction mechanisms, endocytosis, peroxisomes, phagosomes, and regulation of autophagy, which may be significant in SBV resistance. This study presents novel and useful SNP molecular markers that can be utilized as assisted molecular markers to select honeybees resistant to SBV for breeding and that can be used as a biocontrol technique to protect honeybees from SBV.


Asunto(s)
Polimorfismo de Nucleótido Simple , Virus ARN , Abejas/genética , Animales , Larva/genética , Filogenia , Virus ARN/genética
20.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37762477

RESUMEN

Long non-coding RNAs (lncRNAs) play an essential part in controlling gene expression and a variety of biological processes such as immune defense and stress-response. However, whether and how lncRNAs regulate responses of Apis cerana larvae to Ascosphaera apis invasion has remained unclear until now. Here, the identification and structural analysis of lncRNAs in the guts of A. cerana worker larvae were conducted, and the expression profile of larval lncRNAs during the A. apis infection process was then analyzed, followed by an investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in the host response. In total, 76 sense lncRNAs, 836 antisense lncRNAs, 184 intron lncRNAs, 362 bidirectional lncRNAs, and 2181 intron lncRNAs were discovered in the larval guts. Additionally, 30 known and 9 novel lncRNAs were potential precursors for 36 and 11 miRNAs, respectively. In the three comparison groups, 386, 351, and 272 DElncRNAs were respectively identified, indicating the change in the overall expression pattern of host lncRNAs following the A. apis invasion. Analysis of cis-acting effect showed that DElncRNAs in the 4-, 5-, and 6-day-old comparison groups putatively regulated 55, 30, and 20 up- and down-stream genes, respectively, which were involved in a series of crucial functional terms and pathways, such as MAPK signaling pathway, and cell process. Analysis showed that 31, 8, and 11 DElncRNAs as potential antisense lncRNAs may interact with 26, 8, and 9 sense-strand mRNAs. Moreover, investigation of the competing endogenous RNA (ceRNA) network indicated that 148, 283, and 257 DElncRNAs were putatively regulated. The expression of target genes by targeting corresponding DEmiRNAs included those associated with antioxidant enzymes and immune responses. These results suggested that DElncRNAs played a potential part in the larval guts responding to the A. apis infection through a cis-acting manner and ceRNA mechanisms. Our findings deepen our understanding of interactions between A. cerana larvae and A. apis and offer a basis for clarifying the DElncRNA-mediated mechanisms underlying the host response to fungal invasion.


Asunto(s)
ARN Largo no Codificante , Abejas/genética , Animales , Larva/genética , ARN Largo no Codificante/genética , Antioxidantes , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA