Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neural Eng ; 19(6)2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36301685

RESUMEN

The temporal shape of a pulse in transcranial magnetic stimulation (TMS) influences which neuron populations are activated preferentially as well as the strength and even direction of neuromodulation effects. Furthermore, various pulse shapes differ in their efficiency, coil heating, sensory perception, and clicking sound. However, the available TMS pulse shape repertoire is still very limited to a few biphasic, monophasic, and polyphasic pulses with sinusoidal or near-rectangular shapes. Monophasic pulses, though found to be more selective and stronger in neuromodulation, are generated inefficiently and therefore only available in simple low-frequency repetitive protocols. Despite a strong interest to exploit the temporal effects of TMS pulse shapes and pulse sequences, waveform control is relatively inflexible and only possible parametrically within certain limits. Previously proposed approaches for flexible pulse shape control, such as through power electronic inverters, have significant limitations: The semiconductor switches can fail under the immense electrical stress associated with free pulse shaping, and most conventional power inverter topologies are incapable of generating smooth electric fields or existing pulse shapes. Leveraging intensive preliminary work on modular power electronics, we present a modular pulse synthesizer (MPS) technology that can, for the first time, flexibly generate high-power TMS pulses (one-side peak ∼4000 V, ∼8000 A) with user-defined electric field shape as well as rapid sequences of pulses with high output quality. The circuit topology breaks the problem of simultaneous high power and switching speed into smaller, manageable portions, distributed across several identical modules. In consequence, the MPS TMS techology can use semiconductor devices with voltage and current ratings lower than the overall pulse voltage and distribute the overall switching of several hundred kilohertz among multiple transistors. MPS TMS can synthesize practically any pulse shape, including conventional ones, with fine quantization of the induced electric field (⩽17% granularity without modulation and ∼300 kHz bandwidth). Moreover, the technology allows optional symmetric differential coil driving so that the average electric potential of the coil, in contrast to conventional TMS devices, stays constant to prevent capacitive artifacts in sensitive recording amplifiers, such as electroencephalography. MPS TMS can enable the optimization of stimulation paradigms for more sophisticated probing of brain function as well as stronger and more selective neuromodulation, further expanding the parameter space available to users.


Asunto(s)
Amplificadores Electrónicos , Estimulación Magnética Transcraneal , Estimulación Magnética Transcraneal/métodos , Electroencefalografía , Frecuencia Cardíaca
2.
J Magn Reson ; 261: 199-204, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26507308

RESUMEN

The necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse. This is a proof of concept study showcasing the capability of AWG pulses to precisely cancel out the resonator ring-down, and allow for the detection of EPR signal during the pulse itself, as well as the dead-time of the resonator. However, the applicability of this approach to conventional EPR experiments is not immediate, as it hinges on either (1) the availability of low-noise microwave sources and amplifiers to produce the necessary power for pulse EPR experiment or (2) the availability of very high conversion factor micro coil resonators that allow for pulse EPR experiments at modest microwave power.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Algoritmos , Análisis de Fourier , Microondas , Poliestirenos/química , Temperatura
3.
J Magn Reson ; 235: 95-108, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23999530

RESUMEN

We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤ 250 ps resolution. The implications and potential applications of these capabilities will be discussed.


Asunto(s)
Conversión Analogo-Digital , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Calibración , Campos Electromagnéticos , Electrónica , Diseño de Equipo , Análisis de Fourier , Microondas , Distribución Normal , Procesamiento de Señales Asistido por Computador/instrumentación , Relación Señal-Ruido , Programas Informáticos , Análisis de Ondículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA