Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 135(6): 1829-1841, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35305125

RESUMEN

KEY MESSAGE: Spontaneous haploid genome doubling is not associated with undesirable linkage drag effects. The presence of spontaneous doubling genes allows maximum exploitation of variability from the temperate-adapted BS39 population Tropical non-elite maize (Zea mays L.) germplasm, such as BS39, provides a unique opportunity for broadening the genetic base of U.S. Corn Belt germplasm. In vivo doubled haploid (DH) technology has been used to efficiently exploit non-elite germplasm. It can help to purge deleterious recessive alleles. The objectives of this study were to determine the usefulness of BS39-derived inbred lines using both SSD and DH methods, to determine the impact of spontaneous as compared with artificial haploid genome doubling on genetic variance among BS39-derived DH lines, and to identify SNP markers associated with agronomic traits among BS39 inbreds monitored at testcross level. We developed two sets of inbred lines directly from BS39 by DH and SSD methods, named BS39_DH and BS39_SSD. Additionally, two sets were derived from a cross between BS39 and A427 (SHGD donor) by DH and SSD methods, named BS39 × A427_DH and BS39 × A427_SSD, respectively. Grain yield, moisture, plant height, ear height, stalk lodging, and root lodging were measured to estimate genetic parameters. For genome-wide association analysis, inbred lines were genotyped using genotype-by-sequencing and Diversity Array Technology Sequencing (DArTSeq). Some BS39-derived inbred lines performed better than elite germplasm inbreds and all sets showed significant genetic variance. The presence of spontaneous haploid genome doubling genes did not affect performance of inbred lines. Five SNPs were significant and three of them located within genes related to plant development or abiotic stresses. These results demonstrate the potential of BS39 to add novel alleles to temperate elite germplasm.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Genotipo , Haploidia , Semillas , Zea mays/genética
2.
Plant Physiol Biochem ; 202: 107945, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37562202

RESUMEN

Whole genome doubling (WGD) plays a critical role in plant evolution, yet the mechanisms underlying the maintenance of overall equilibrium following an artificial doubling event, as well as its impact on phenotype and adaptability, remain unclear. By comparing the gene expression of naturally occurring weeping forsythia diploids and colchicine-induced autotetraploids under normal growth conditions and cold stress, we identified gene expression dosage responses resulting from ploidy change. Only a small proportion of effectively expressed genes showed dosage effect, and most genes did not exhibit significant expression differences. However, the genes that showed expression dosage effect were largely random. The autotetraploids had slower overall growth rates, possibly resulting from negative gene dosage effects on zeatin synthesis and multiple metabolic delays caused by other negative dosage genes. Our comparative analysis of cold response genes in diploids and autotetraploids revealed that genes related to "response to abscisic acid" and "cold acclimation" were key factors contributing to greater cold tolerance in the autotetraploids. In particular, gene expression related to "cold acclimation" might mitigate the effects of cold stress. Taken together, our findings suggested that overall gene expression equilibrium following WGD of weeping forsythia autotetraploids was achieved through the inactivation of the majority of duplicated genes. Our research provides new insights into the mechanisms regulating expression dosage balance following polyploidization events.


Asunto(s)
Forsythia , Forsythia/genética , Fenotipo , Transcriptoma , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA