Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Bioinformatics ; 25(1): 276, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39179997

RESUMEN

Sparse multiple canonical correlation network analysis (SmCCNet) is a machine learning technique for integrating omics data along with a variable of interest (e.g., phenotype of complex disease), and reconstructing multi-omics networks that are specific to this variable. We present the second-generation SmCCNet (SmCCNet 2.0) that adeptly integrates single or multiple omics data types along with a quantitative or binary phenotype of interest. In addition, this new package offers a streamlined setup process that can be configured manually or automatically, ensuring a flexible and user-friendly experience. AVAILABILITY : This package is available in both CRAN: https://cran.r-project.org/web/packages/SmCCNet/index.html and Github: https://github.com/KechrisLab/SmCCNet under the MIT license. The network visualization tool is available at https://smccnet.shinyapps.io/smccnetnetwork/ .


Asunto(s)
Aprendizaje Automático , Programas Informáticos , Genómica/métodos , Redes Reguladoras de Genes , Biología Computacional/métodos , Humanos , Multiómica
2.
Biometrics ; 80(3)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39193848

RESUMEN

Passive acoustic monitoring can be an effective way of monitoring wildlife populations that are acoustically active but difficult to survey visually, but identifying target species calls in recordings is non-trivial. Machine learning (ML) techniques can do detection quickly but may miss calls and produce false positives, i.e., misidentify calls from other sources as being from the target species. While abundance estimation methods can address the former issue effectively, methods to deal with false positives are under-investigated. We propose an acoustic spatial capture-recapture (ASCR) method that deals with false positives by treating species identity as a latent variable. Individual-level outputs from ML techniques are treated as random variables whose distributions depend on the latent identity. This gives rise to a mixture model likelihood that we maximize to estimate call density. We compare our method to existing methods by applying it to an ASCR survey of frogs and simulated acoustic surveys of gibbons based on real gibbon acoustic data. Estimates from our method are closer to ASCR applied to the dataset without false positives than those from a widely used false positive "correction factor" method. Simulations show our method to have bias close to zero and accurate coverage probabilities and to perform substantially better than ASCR without accounting for false positives.


Asunto(s)
Acústica , Densidad de Población , Vocalización Animal , Animales , Vocalización Animal/fisiología , Aprendizaje Automático , Simulación por Computador , Anuros
3.
J Digit Imaging ; 36(6): 2648-2661, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37537513

RESUMEN

MRI-based tractography is still underexploited and unsuited for routine use in brain tumor surgery due to heterogeneity of methods and functional-anatomical definitions and above all, the lack of a turn-key system. Standardization of methods is therefore desirable, whereby an objective and reliable approach is a prerequisite before the results of any automated procedure can subsequently be validated and used in neurosurgical practice. In this work, we evaluated these preliminary but necessary steps in healthy volunteers. Specifically, we evaluated the robustness and reliability (i.e., test-retest reproducibility) of tractography results of six clinically relevant white matter tracts by using healthy volunteer data (N = 136) from the Human Connectome Project consortium. A deep learning convolutional network-based approach was used for individualized segmentation of regions of interest, combined with an evidence-based tractography protocol and appropriate post-tractography filtering. Robustness was evaluated by estimating the consistency of tractography probability maps, i.e., averaged tractograms in normalized space, through the use of a hold-out cross-validation approach. No major outliers were found, indicating a high robustness of the tractography results. Reliability was evaluated at the individual level. First by examining the overlap of tractograms that resulted from repeatedly processed identical MRI scans (N = 10, 10 iterations) to establish an upper limit of reliability of the pipeline. Second, by examining the overlap for subjects that were scanned twice at different time points (N = 40). Both analyses indicated high reliability, with the second analysis showing a reliability near the upper limit. The robust and reliable subject-specific generation of white matter tracts in healthy subjects holds promise for future validation of our pipeline in a clinical population and subsequent implementation in brain tumor surgery.


Asunto(s)
Neoplasias Encefálicas , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen de Difusión Tensora/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Procesamiento de Imagen Asistido por Computador/métodos
4.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047043

RESUMEN

A description of REMO22, a new molecular replacement program for proteins and nucleic acids, is provided. This program, as with REMO09, can use various types of prior information through appropriate conditional distribution functions. Its efficacy in model searching has been validated through several test cases involving proteins and nucleic acids. Although REMO22 can be configured with different protocols according to user directives, it has been developed primarily as an automated tool for determining the crystal structures of macromolecules. To evaluate REMO22's utility in the current crystallographic environment, its experimental results must be compared favorably with those of the most widely used Molecular Replacement (MR) programs. To accomplish this, we chose two leading tools in the field, PHASER and MOLREP. REMO22, along with MOLREP and PHASER, were included in pipelines that contain two additional steps: phase refinement (SYNERGY) and automated model building (CAB). To evaluate the effectiveness of REMO22, SYNERGY and CAB, we conducted experimental tests on numerous macromolecular structures. The results indicate that REMO22, along with its pipeline REMO22 + SYNERGY + CAB, presents a viable alternative to currently used phasing tools.


Asunto(s)
Ácidos Nucleicos , Programas Informáticos , Modelos Moleculares , Cristalografía por Rayos X , Proteínas/química , Ácidos Nucleicos/química
5.
Neuroimage ; 249: 118835, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936923

RESUMEN

Quantitative susceptibility mapping (QSM) is an MRI-based, computational method for anatomically localizing and measuring concentrations of specific biomarkers in tissue such as iron. Growing research suggests QSM is a viable method for evaluating the impact of iron overload in neurological disorders and on cognitive performance in aging. Several software toolboxes are currently available to reconstruct QSM maps from 3D GRE MR Images. However, few if any software packages currently exist that offer fully automated pipelines for QSM-based data analyses: from DICOM images to region-of-interest (ROI) based QSM values. Even less QSM-based software exist that offer quality control measures for evaluating the QSM output. Here, we address these gaps in the field by introducing and demonstrating the reliability and external validity of Ironsmith; an open-source, fully automated pipeline for creating and processing QSM maps, extracting QSM values from subcortical and cortical brain regions (89 ROIs) and evaluating the quality of QSM data using SNR measures and assessment of outlier regions on phase images. Ironsmith also features automatic filtering of QSM outlier values and precise CSF-only QSM reference masks that minimize partial volume effects. Testing of Ironsmith revealed excellent intra- and inter-rater reliability. Finally, external validity of Ironsmith was demonstrated via an anatomically selective relationship between motor performance and Ironsmith-derived QSM values in motor cortex. In sum, Ironsmith provides a freely-available, reliable, turn-key pipeline for QSM-based data analyses to support research on the impact of brain iron in aging and neurodegenerative disease.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Programas Informáticos , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Neuroimagen/normas
6.
Funct Integr Genomics ; 22(6): 1229-1241, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36287286

RESUMEN

Genomic rearrangements and copy number variations (CNVs) are the major regulators of clustered microRNAs (miRNAs) expression. Several clustered miRNAs are harbored in and around chromosome fragile sites (CFSs) and cancer-associated genomic hotspots. Aberrant expression of such clusters can lead to oncogenic or tumor suppressor activities. Here, we developed CmirC (Clustered miRNAs co-localized with CNVs), a comprehensive database of clustered miRNAs co-localized with CNV regions. The database consists of 481 clustered miRNAs co-localized with CNVs and their expression patterns in 35 cancer types of the TCGA. The portal also provides information on CFSs, miRNA cluster candidates, genomic coordinates, target gene networks, and gene functionality. The web portal is integrated with advanced tools such as JBrowse, NCBI-BLAST, GeneSCF, visNetwork, and NetworkD3 to help the researchers in data analysis, visualization, and browsing. This portal provides a promising avenue for integrated data analytics and offers additional evidence for the complex regulation of clustered miRNAs in cancer. The web portal is freely accessible at http://slsdb.manipal.edu/cmirclust to explore clinically significant miRNAs.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Variaciones en el Número de Copia de ADN , MicroARNs/genética , Genómica , Redes Reguladoras de Genes , Neoplasias/genética
7.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563148

RESUMEN

The prediction of how a ligand binds to its target is an essential step for Structure-Based Drug Design (SBDD) methods. Molecular docking is a standard tool to predict the binding mode of a ligand to its macromolecular receptor and to quantify their mutual complementarity, with multiple applications in drug design. However, docking programs do not always find correct solutions, either because they are not sampled or due to inaccuracies in the scoring functions. Quantifying the docking performance in real scenarios is essential to understanding their limitations, managing expectations and guiding future developments. Here, we present a fully automated pipeline for pose prediction validated by participating in the Continuous Evaluation of Ligand Pose Prediction (CELPP) Challenge. Acknowledging the intrinsic limitations of the docking method, we devised a strategy to automatically mine and exploit pre-existing data, defining-whenever possible-empirical restraints to guide the docking process. We prove that the pipeline is able to generate predictions for most of the proposed targets as well as obtain poses with low RMSD values when compared to the crystal structure. All things considered, our pipeline highlights some major challenges in the automatic prediction of protein-ligand complexes, which will be addressed in future versions of the pipeline.


Asunto(s)
Diseño de Fármacos , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica
8.
bioRxiv ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38045372

RESUMEN

Summary: Sparse multiple canonical correlation network analysis (SmCCNet) is a machine learning technique for integrating omics data along with a variable of interest (e.g., phenotype of complex disease), and reconstructing multi-omics networks that are specific to this variable. We present the second-generation SmCCNet (SmCCNet 2.0) that adeptly integrates single or multiple omics data types along with a quantitative or binary phenotype of interest. In addition, this new package offers a streamlined setup process that can be configured manually or automatically, ensuring a flexible and user-friendly experience. Availability: This package is available in both CRAN: https://cran.r-project.org/web/packages/SmCCNet/index.html and Github: https://github.com/KechrisLab/SmCCNet under the MIT license. The network visualization tool is available at https://smccnet.shinyapps.io/smccnetnetwork/.

9.
Genome Med ; 15(1): 43, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322495

RESUMEN

BACKGROUND: Genomics-informed pathogen surveillance strengthens public health decision-making, playing an important role in infectious diseases' prevention and control. A pivotal outcome of genomics surveillance is the identification of pathogen genetic clusters and their characterization in terms of geotemporal spread or linkage to clinical and demographic data. This task often consists of the visual exploration of (large) phylogenetic trees and associated metadata, being time-consuming and difficult to reproduce. RESULTS: We developed ReporTree, a flexible bioinformatics pipeline that allows diving into the complexity of pathogen diversity to rapidly identify genetic clusters at any (or all) distance threshold(s) or cluster stability regions and to generate surveillance-oriented reports based on the available metadata, such as timespan, geography, or vaccination/clinical status. ReporTree is able to maintain cluster nomenclature in subsequent analyses and to generate a nomenclature code combining cluster information at different hierarchical levels, thus facilitating the active surveillance of clusters of interest. By handling several input formats and clustering methods, ReporTree is applicable to multiple pathogens, constituting a flexible resource that can be smoothly deployed in routine surveillance bioinformatics workflows with negligible computational and time costs. This is demonstrated through a comprehensive benchmarking of (i) the cg/wgMLST workflow with large datasets of four foodborne bacterial pathogens and (ii) the alignment-based SNP workflow with a large dataset of Mycobacterium tuberculosis. To further validate this tool, we reproduced a previous large-scale study on Neisseria gonorrhoeae, demonstrating how ReporTree is able to rapidly identify the main species genogroups and characterize them with key surveillance metadata, such as antibiotic resistance data. By providing examples for SARS-CoV-2 and the foodborne bacterial pathogen Listeria monocytogenes, we show how this tool is currently a useful asset in genomics-informed routine surveillance and outbreak detection of a wide variety of species. CONCLUSIONS: In summary, ReporTree is a pan-pathogen tool for automated and reproducible identification and characterization of genetic clusters that contributes to a sustainable and efficient public health genomics-informed pathogen surveillance. ReporTree is implemented in python 3.8 and is freely available at https://github.com/insapathogenomics/ReporTree .


Asunto(s)
COVID-19 , Humanos , Filogenia , SARS-CoV-2 , Genómica/métodos , Biología Computacional , Bacterias/genética
10.
J Comput Biol ; 30(9): 999-1008, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37624644

RESUMEN

Identifying a protein's function is crucial to reveal its role in the cellular complex. Computationally, the most common approach is to search for homologous proteins in a large database of proteins of known function using BLAST. One goal of such an analysis is the identification and visualization of the protein in the taxonomy of interest. Another goal is the reconstruction of the phylogenetic history of the protein. However, the BLAST result provides information about the occurrence of the protein in the taxonomy and its putative function mainly in a tabular format. This requires manual interventions and makes the taxonomic identification laborious. Although various tools exist to visualize and annotate large-scale trees, none of them intuitively and interactively visualizes the protein's occurrence in the taxonomy for different taxonomic ranks. To target this gap, we developed BLASTphylo, a web tool that combines BLAST with automatic taxonomic mapping and phylogenetic analysis and provides the results in interactive visualizations. We demonstrate the functionalities of BLASTphylo in two case studies.


Asunto(s)
Proteínas , Programas Informáticos , Filogenia
11.
Methods Mol Biol ; 2680: 55-65, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37428370

RESUMEN

In planarian flatworms, the piRNA pathway is operated by three PIWI proteins, termed SMEDWI-1, SMEDWI-2, and SMEDWI-3 (SMEDWI = Schmidtea mediterranea PIWI). The interplay between these three PIWI proteins and their associated small noncoding RNAs, termed piRNAs, fuels the outstanding regenerative abilities of planarians, enables tissue homeostasis, and, ultimately, ensures animal survival. As the molecular targets of PIWI proteins are determined by the sequences of their co-bound piRNAs, it is imperative to identify these sequences by next-generation sequencing applications. Following sequencing, the genomic targets and the regulatory potential of the isolated piRNA populations need to be uncovered. To that end, here we present a bioinformatics analysis pipeline for processing and systematic characterization of planarian piRNAs. The pipeline includes steps for the removal of PCR duplicates based on unique molecular identifier (UMI) sequences, and it accounts for piRNA multimapping to different loci in the genome. Importantly, our protocol also includes a fully automated pipeline that is freely available at GitHub. Together with the piRNA isolation and library preparation protocol (see accompanying chapter), the presented computational pipeline enables researchers to explore the functional role of the piRNA pathway in flatworm biology.


Asunto(s)
Biología Computacional , Genoma , ARN de Interacción con Piwi , Planarias , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Biología Computacional/métodos , Genoma/genética , Estudio de Asociación del Genoma Completo , ARN de Interacción con Piwi/genética , Planarias/genética , Internet , Programas Informáticos
12.
EClinicalMedicine ; 58: 101913, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36969336

RESUMEN

Background: Breast cancer is the leading cause of cancer-related deaths in women. However, accurate diagnosis of breast cancer using medical images heavily relies on the experience of radiologists. This study aimed to develop an artificial intelligence model that diagnosed single-mass breast lesions on contrast-enhanced mammography (CEM) for assisting the diagnostic workflow. Methods: A total of 1912 women with single-mass breast lesions on CEM images before biopsy or surgery were included from June 2017 to October 2022 at three centres in China. Samples were divided into training and validation sets, internal testing set, pooled external testing set, and prospective testing set. A fully automated pipeline system (FAPS) using RefineNet and the Xception + Pyramid pooling module (PPM) was developed to perform the segmentation and classification of breast lesions. The performances of six radiologists and adjustments in Breast Imaging Reporting and Data System (BI-RADS) category 4 under the FAPS-assisted strategy were explored in pooled external and prospective testing sets. The segmentation performance was assessed using the Dice similarity coefficient (DSC), and the classification was assessed using heatmaps, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The radiologists' reading time was recorded for comparison with the FAPS. This trial is registered with China Clinical Trial Registration Centre (ChiCTR2200063444). Findings: The FAPS-based segmentation task achieved DSCs of 0.888 ± 0.101, 0.820 ± 0.148 and 0.837 ± 0.132 in the internal, pooled external and prospective testing sets, respectively. For the classification task, the FAPS achieved AUCs of 0.947 (95% confidence interval [CI]: 0.916-0.978), 0.940 (95% [CI]: 0.894-0.987) and 0.891 (95% [CI]: 0.816-0.945). It outperformed radiologists in terms of classification efficiency based on single lesions (6 s vs 3 min). Moreover, the FAPS-assisted strategy improved the performance of radiologists. BI-RADS category 4 in 12.4% and 13.3% of patients was adjusted in two testing sets with the assistance of FAPS, which may play an important guiding role in the selection of clinical management strategies. Interpretation: The FAPS based on CEM demonstrated the potential for the segmentation and classification of breast lesions, and had good generalisation ability and clinical applicability. Funding: This study was supported by the Taishan Scholar Foundation of Shandong Province of China (tsqn202211378), National Natural Science Foundation of China (82001775), Natural Science Foundation of Shandong Province of China (ZR2021MH120), and Special Fund for Breast Disease Research of Shandong Medical Association (YXH2021ZX055).

13.
Methods Mol Biol ; 2660: 137-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37191795

RESUMEN

Mass spectrometry (MS) is an important tool for biological studies because it is capable of interrogating a diversity of biomolecules (proteins, drugs, metabolites) not captured via alternate genomic platforms. Unfortunately, downstream data analysis becomes complicated when attempting to evaluate and integrate measurements of different molecular classes and requires the aggregation of expertise from different relevant disciplines. This complexity represents a significant bottleneck that limits the routine deployment of MS-based multi-omic methods, despite the unmatched biological and functional insight the data can provide. To address this unmet need, our group introduced Omics Notebook as an open-source framework for facilitating exploratory analysis, reporting and integrating MS-based multi-omic data in a way that is automated, reproducible and customizable. By deploying this pipeline, we have devised a framework for researchers to more rapidly identify functional patterns across complex data types and focus on statistically significant and biologically interesting aspects of their multi-omic profiling experiments. This chapter aims to describe a protocol which leverages our publicly accessible tools to analyze and integrate data from high-throughput proteomics and metabolomics experiments and produce reports that will facilitate more impactful research, cross-institutional collaborations, and wider data dissemination.


Asunto(s)
Proteómica , Programas Informáticos , Proteómica/métodos , Metabolómica/métodos , Genómica , Redes y Vías Metabólicas
14.
3 Biotech ; 12(8): 173, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35845108

RESUMEN

At specific genomic loci, miRNAs are in clusters and their association with copy number variations (CNVs) may exhibit abnormal expression in several cancers. Hence, the current study aims to understand the expression of miRNA clusters residing within CNVs and the regulation of their target genes in bladder cancer. To achieve this, we used extensive bioinformatics resources and performed an integrated analysis of recurrent CNVs, clustered miRNA expression, gene expression, and drug-gene interaction datasets. The study identified nine upregulated miRNA clusters that are residing on CNV gain regions and three miRNA clusters (hsa-mir-200c/mir-141, hsa-mir-216a/mir-217, and hsa-mir-15b/mir-16-2) are correlated with patient survival. These clustered miRNAs targeted 89 genes that were downregulated in bladder cancer. Moreover, network and gene enrichment analysis displayed 10 hub genes (CCND2, ETS1, FGF2, FN1, JAK2, JUN, KDR, NOTCH1, PTEN, and ZEB1) which have significant potential for diagnosis and prognosis of bladder cancer patients. Interestingly, hsa-mir-200c/mir-141 and hsa-mir-15b/mir-16-2 cluster candidates showed significant differences in their expression in stage-specific manner during cancer progression. Downregulation of NOTCH1 by hsa-mir-200c/mir-141 may also sensitize tumors to methotrexate thus suggesting potential chemotherapeutic options for bladder cancer subjects. To overcome some computational challenges and reduce the complexity in multistep big data analysis, we developed an automated pipeline called CmiRClustFinder v1.0 (https://github.com/msls-bioinfo/CmiRClustFinder_v1.0), which can perform integrated data analysis of 35 TCGA cancer types. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03225-z.

15.
Gigascience ; 8(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544207

RESUMEN

BACKGROUND: De novo transcriptome assemblies are required prior to analyzing RNA sequencing data from a species without an existing reference genome or transcriptome. Despite the prevalence of transcriptomic studies, the effects of using different workflows, or "pipelines," on the resulting assemblies are poorly understood. Here, a pipeline was programmatically automated and used to assemble and annotate raw transcriptomic short-read data collected as part of the Marine Microbial Eukaryotic Transcriptome Sequencing Project. The resulting transcriptome assemblies were evaluated and compared against assemblies that were previously generated with a different pipeline developed by the National Center for Genome Research. RESULTS: New transcriptome assemblies contained the majority of previous contigs as well as new content. On average, 7.8% of the annotated contigs in the new assemblies were novel gene names not found in the previous assemblies. Taxonomic trends were observed in the assembly metrics. Assemblies from the Dinoflagellata showed a higher number of contigs and unique k-mers than transcriptomes from other phyla, while assemblies from Ciliophora had a lower percentage of open reading frames compared to other phyla. CONCLUSIONS: Given current bioinformatics approaches, there is no single "best" reference transcriptome for a particular set of raw data. As the optimum transcriptome is a moving target, improving (or not) with new tools and approaches, automated and programmable pipelines are invaluable for managing the computationally intensive tasks required for re-processing large sets of samples with revised pipelines and ensuring a common evaluation workflow is applied to all samples. Thus, re-assembling existing data with new tools using automated and programmable pipelines may yield more accurate identification of taxon-specific trends across samples in addition to novel and useful products for the community.


Asunto(s)
Biología Computacional , Eucariontes/genética , Perfilación de la Expresión Génica , Transcriptoma , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Genoma , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Flujo de Trabajo
16.
Methods Mol Biol ; 1399: 207-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26791506

RESUMEN

Approaches in molecular biology, particularly those that deal with high-throughput sequencing of entire microbial communities (the field of metagenomics), are rapidly advancing our understanding of the composition and functional content of microbial communities involved in climate change, environmental pollution, human health, biotechnology, etc. Metagenomics provides researchers with the most complete picture of the taxonomic (i.e., what organisms are there) and functional (i.e., what are those organisms doing) composition of natively sampled microbial communities, making it possible to perform investigations that include organisms that were previously intractable to laboratory-controlled culturing; currently, these constitute the vast majority of all microbes on the planet. All organisms contained in environmental samples are sequenced in a culture-independent manner, most often with 16S ribosomal amplicon methods to investigate the taxonomic or whole-genome shotgun-based methods to investigate the functional content of sampled communities. Metagenomics allows researchers to characterize the community composition and functional content of microbial communities, but it cannot show which functional processes are active; however, near parallel developments in transcriptomics promise a dramatic increase in our knowledge in this area as well. Since 2008, MG-RAST (Meyer et al., BMC Bioinformatics 9:386, 2008) has served as a public resource for annotation and analysis of metagenomic sequence data, providing a repository that currently houses more than 150,000 data sets (containing 60+ tera-base-pairs) with more than 23,000 publically available. MG-RAST, or the metagenomics RAST (rapid annotation using subsystems technology) server makes it possible for users to upload raw metagenomic sequence data in (preferably) fastq or fasta format. Assessments of sequence quality, annotation with respect to multiple reference databases, are performed automatically with minimal input from the user (see Subheading 4 at the end of this chapter for more details). Post-annotation analysis and visualization are also possible, directly through the web interface, or with tools like matR (metagenomic analysis tools for R, covered later in this chapter) that utilize the MG-RAST API ( http://api.metagenomics.anl.gov/api.html ) to easily download data from any stage in the MG-RAST processing pipeline. Over the years, MG-RAST has undergone substantial revisions to keep pace with the dramatic growth in the number, size, and types of sequence data that accompany constantly evolving developments in metagenomics and related -omic sciences (e.g., metatranscriptomics).


Asunto(s)
Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Anotación de Secuencia Molecular/métodos , Biología Computacional/métodos , Bases de Datos Genéticas , Humanos , Internet , Programas Informáticos
17.
Environ Sci Pollut Res Int ; 23(8): 7074-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26070737

RESUMEN

As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.


Asunto(s)
Eliminación de Residuos , Residuos/estadística & datos numéricos , Ciudades , Desecación , Alimentos , Residuos de Alimentos , Humanos , Eliminación de Residuos/métodos , República de Corea , Vacio , Instalaciones de Eliminación de Residuos/estadística & datos numéricos
18.
J Neurosci Methods ; 219(2): 312-23, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23958749

RESUMEN

Many studies have investigated test-retest reliability of active voxel classification for fMRI, which is increasingly important for emerging clinical applications. The implicit impact of voxel-wise thresholding on this type of reliability has previously been under-appreciated. This has had two detrimental effects: (1) reliability studies use different fixed thresholds, making comparison of results is challenging; (2) typical studies do not assess reliability at the individual level, which could provide information for selecting activation thresholds. To show the limitations of traditional fixed-threshold approaches, we investigated the threshold dependence of fMRI reliability measures, with the goal of developing an automated threshold selection routine. For this purpose, we demonstrated threshold dependence of both novel (ROC-reliability or ROC-r) and established (Rombouts overlap or RR) reliability measures. Both methods rely minimally on statistical assumptions, and provide a data-driven summary of the threshold-reliability relationship. We applied these methods to data from eight subjects performing a simple finger tapping task across repeated fMRI sessions. We showed that the reliability measures varied dramatically with threshold. This variation depended strongly on the individual tested. Finally, we demonstrated novel procedures using ROC-r and overlap analysis to optimize thresholds on a case-by-case basis. Ultimately, a method to determine robust individual-level activation maps represents a critical advance for fMRI as a diagnostic tool.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética/métodos , Área Bajo la Curva , Humanos , Curva ROC , Reproducibilidad de los Resultados
19.
Front Hum Neurosci ; 7: 794, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24319419

RESUMEN

Multimodal neuroimaging studies have recently become a trend in the neuroimaging field and are certainly a standard for the future. Brain connectivity studies combining functional activation patterns using resting-state or task-related functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) tractography have growing popularity. However, there is a scarcity of solutions to perform optimized, intuitive, and consistent multimodal fMRI/DTI studies. Here we propose a new tool, brain connectivity analysis tool (BrainCAT), for an automated and standard multimodal analysis of combined fMRI/DTI data, using freely available tools. With a friendly graphical user interface, BrainCAT aims to make data processing easier and faster, implementing a fully automated data processing pipeline and minimizing the need for user intervention, which hopefully will expand the use of combined fMRI/DTI studies. Its validity was tested in an aging study of the default mode network (DMN) white matter connectivity. The results evidenced the cingulum bundle as the structural connector of the precuneus/posterior cingulate cortex and the medial frontal cortex, regions of the DMN. Moreover, mean fractional anisotropy (FA) values along the cingulum extracted with BrainCAT showed a strong correlation with FA values from the manual selection of the same bundle. Taken together, these results provide evidence that BrainCAT is suitable for these analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA