Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(4): 936-953.e20, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32386544

RESUMEN

Recent large-scale collaborations are generating major surveys of cell types and connections in the mouse brain, collecting large amounts of data across modalities, spatial scales, and brain areas. Successful integration of these data requires a standard 3D reference atlas. Here, we present the Allen Mouse Brain Common Coordinate Framework (CCFv3) as such a resource. We constructed an average template brain at 10 µm voxel resolution by interpolating high resolution in-plane serial two-photon tomography images with 100 µm z-sampling from 1,675 young adult C57BL/6J mice. Then, using multimodal reference data, we parcellated the entire brain directly in 3D, labeling every voxel with a brain structure spanning 43 isocortical areas and their layers, 329 subcortical gray matter structures, 81 fiber tracts, and 8 ventricular structures. CCFv3 can be used to analyze, visualize, and integrate multimodal and multiscale datasets in 3D and is openly accessible (https://atlas.brain-map.org/).


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Encéfalo/fisiología , Animales , Atlas como Asunto , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Cereb Cortex ; 33(7): 3575-3590, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35965076

RESUMEN

Brain cartography has expanded substantially over the past decade. In this regard, resting-state functional connectivity (FC) plays a key role in identifying the locations of putative functional borders. However, scant attention has been paid to the dynamic nature of functional interactions in the human brain. Indeed, FC is typically assumed to be stationary across time, which may obscure potential or subtle functional boundaries, particularly in regions with high flexibility and adaptability. In this study, we developed a dynamic FC (dFC)-based parcellation framework, established a new functional human brain atlas termed D-BFA (DFC-based Brain Functional Atlas), and verified its neurophysiological plausibility by stereo-EEG data. As the first dFC-based whole-brain atlas, the proposed D-BFA delineates finer functional boundaries that cannot be captured by static FC, and is further supported by good correspondence with cytoarchitectonic areas and task activation maps. Moreover, the D-BFA reveals the spatial distribution of dynamic variability across the brain and generates more homogenous parcels compared with most alternative parcellations. Our results demonstrate the superiority and practicability of dFC in brain parcellation, providing a new template to exploit brain topographic organization from a dynamic perspective. The D-BFA will be publicly available for download at https://github.com/sliderplm/D-BFA-618.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos
3.
J Neuroradiol ; 51(4): 101188, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38408721

RESUMEN

BACKGROUND AND PURPOSE: Olfaction is an early marker of neurodegenerative disease. Standard olfactory function is essential due to the importance of olfaction in human life. The psychophysical evaluation assesses the olfactory function commonly. It is patient-reported, and results rely on the patient's answers and collaboration. However, methodological difficulties attributed to the psychophysical evaluation of olfactory-related cerebral areas led to limited assessment of olfactory function in the human brain. MATERIALS AND METHODS: The current study utilized clustering approaches to assess olfactory function in fMRI data and used brain activity to parcellate the brain with homogeneous properties. Deep neural network architecture based on ResNet convolutional neural networks (CNN) and Long Short-Term Model (LSTM) designed to classify healthy with olfactory disorders subjects. RESULTS: The fMRI result obtained by k-means unsupervised machine learning model was within the expected outcome and similar to those found with the conn toolbox in detecting active areas. There was no significant difference between the means of subjects and every subject. Proposing a CRNN deep learning model to classify fMRI data in two different healthy and with olfactory disorders groups leads to an accuracy score of 97 %. CONCLUSIONS: The K-means unsupervised algorithm can detect the active regions in the brain and analyze olfactory function. Classification results prove the CNN-LSTM architecture using ResNet provides the best accuracy score in olfactory fMRI data. It is the first attempt conducted on olfactory fMRI data in detail until now.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/fisiopatología , Mapeo Encefálico/métodos , Aprendizaje Profundo , Persona de Mediana Edad , Algoritmos
4.
Neuroimage ; 276: 120214, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286151

RESUMEN

Our understanding of the structure of the brain and its relationships with human traits is largely determined by how we represent the structural connectome. Standard practice divides the brain into regions of interest (ROIs) and represents the connectome as an adjacency matrix having cells measuring connectivity between pairs of ROIs. Statistical analyses are then heavily driven by the (largely arbitrary) choice of ROIs. In this article, we propose a human trait prediction framework utilizing a tractography-based representation of the brain connectome, which clusters fiber endpoints to define a data-driven white matter parcellation targeted to explain variation among individuals and predict human traits. This leads to Principal Parcellation Analysis (PPA), representing individual brain connectomes by compositional vectors building on a basis system of fiber bundles that captures the connectivity at the population level. PPA eliminates the need to choose atlases and ROIs a priori, and provides a simpler, vector-valued representation that facilitates easier statistical analysis compared to the complex graph structures encountered in classical connectome analyses. We illustrate the proposed approach through applications to data from the Human Connectome Project (HCP) and show that PPA connectomes improve power in predicting human traits over state-of-the-art methods based on classical connectomes, while dramatically improving parsimony and maintaining interpretability. Our PPA package is publicly available on GitHub, and can be implemented routinely for diffusion image data.


Asunto(s)
Conectoma , Sustancia Blanca , Humanos , Conectoma/métodos , Encéfalo/diagnóstico por imagen
5.
J Neurophysiol ; 128(1): 197-217, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35675446

RESUMEN

Brain parcellations play a crucial role in the analysis of brain imaging data sets, as they can significantly affect the outcome of the analysis. In recent years, several novel approaches for constructing MRI-based brain parcellations have been developed with promising results. In the absence of ground truth, several evaluation approaches have been used to evaluate currently available brain parcellations. In this article, we review and critique methods used for evaluating functional brain parcellations constructed using fMRI data sets. We also describe how some of these evaluation methods have been used to estimate the optimal parcellation granularity. We provide a critical discussion of the current approach to the problem of identifying the optimal brain parcellation that is suited for a given neuroimaging study. We argue that the criteria for an optimal brain parcellation must depend on the application the parcellation is intended for. We describe a teleological approach to the evaluation of brain parcellations, where brain parcellations are evaluated in different contexts and optimal brain parcellations for each context are identified separately. We conclude by discussing several directions for further research that would result in improved evaluation strategies.


Asunto(s)
Mapeo Encefálico , Procesamiento de Imagen Asistido por Computador , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen
6.
Hum Brain Mapp ; 43(8): 2419-2443, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35274787

RESUMEN

Connectivity-based parcellation (CBP) methods are used to define homogenous and biologically meaningful parcels or nodes-the foundations of brain network fingerprinting-by grouping voxels with similar patterns of brain connectivity. However, we still lack a gold standard method and the use of CBPs to study the aging brain remains scarce. Our study proposes a novel CBP method from diffusion MRI data and shows its potential to produce a more accurate characterization of the longitudinal alterations in brain network topology occurring in aging. For this, we constructed whole-brain connectivity maps from diffusion MRI data of two datasets: an aging cohort evaluated at two timepoints (mean interval time: 52.8 ± 7.24 months) and a normative adult cohort-MGH-HCP. State-of-the-art clustering techniques were used to identify the best performing technique. Furthermore, we developed a new metric (connectivity homogeneity fingerprint [CHF]) to evaluate the success of the final CBP in improving regional/global structural connectivity homogeneity. Our results show that our method successfully generates highly homogeneous parcels, as described by the significantly larger CHF score of the resulting parcellation, when compared to the original. Additionally, we demonstrated that the developed parcellation provides a robust anatomical framework to assess longitudinal changes in the aging brain. Our results reveal that aging is characterized by a reorganization of the brain's structural network involving the decrease of intra-hemispheric, increase of inter-hemispheric connectivity, and topological rearrangement. Overall, this study proposes a new methodology to perform accurate and robust evaluations of CBP of the human brain.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Adulto , Envejecimiento , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios de Cohortes , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Imagen por Resonancia Magnética
7.
Hum Brain Mapp ; 43(12): 3706-3720, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35451538

RESUMEN

One important approach to human brain mapping is to define a set of distinct regions that can be linked to unique functions. Numerous brain parcellations have been proposed, using cytoarchitectonic, structural, or functional magnetic resonance imaging (fMRI) data. The intrinsic smoothness of brain data, however, poses a problem for current methods seeking to compare different parcellations. For example, criteria that simply compare within-parcel to between-parcel similarity provide even random parcellations with a high value. Furthermore, the evaluation is biased by the spatial scale of the parcellation. To address this problem, we propose the distance-controlled boundary coefficient (DCBC), an unbiased criterion to evaluate discrete parcellations. We employ this new criterion to evaluate existing parcellations of the human neocortex in their power to predict functional boundaries for an fMRI data set with many different tasks, as well as for resting-state data. We find that common anatomical parcellations do not perform better than chance, suggesting that task-based functional boundaries do not align well with sulcal landmarks. Parcellations based on resting-state fMRI data perform well; in some cases, as well as a parcellation defined on the evaluation data itself. Finally, multi-modal parcellations that combine functional and anatomical criteria perform substantially worse than those based on functional data alone, indicating that functionally homogeneous regions often span major anatomical landmarks. Overall, the DCBC advances the field of functional brain mapping by providing an unbiased metric that compares the predictive ability of different brain parcellations to define brain regions that are functionally maximally distinct.


Asunto(s)
Mapeo Encefálico , Procesamiento de Imagen Asistido por Computador , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Probabilidad
8.
Cereb Cortex ; 31(10): 4477-4500, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33942058

RESUMEN

Resting-state functional magnetic resonance imaging (rs-fMRI) allows estimation of individual-specific cortical parcellations. We have previously developed a multi-session hierarchical Bayesian model (MS-HBM) for estimating high-quality individual-specific network-level parcellations. Here, we extend the model to estimate individual-specific areal-level parcellations. While network-level parcellations comprise spatially distributed networks spanning the cortex, the consensus is that areal-level parcels should be spatially localized, that is, should not span multiple lobes. There is disagreement about whether areal-level parcels should be strictly contiguous or comprise multiple noncontiguous components; therefore, we considered three areal-level MS-HBM variants spanning these range of possibilities. Individual-specific MS-HBM parcellations estimated using 10 min of data generalized better than other approaches using 150 min of data to out-of-sample rs-fMRI and task-fMRI from the same individuals. Resting-state functional connectivity derived from MS-HBM parcellations also achieved the best behavioral prediction performance. Among the three MS-HBM variants, the strictly contiguous MS-HBM exhibited the best resting-state homogeneity and most uniform within-parcel task activation. In terms of behavioral prediction, the gradient-infused MS-HBM was numerically the best, but differences among MS-HBM variants were not statistically significant. Overall, these results suggest that areal-level MS-HBMs can capture behaviorally meaningful individual-specific parcellation features beyond group-level parcellations. Multi-resolution trained models and parcellations are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong2022_ArealMSHBM).


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/fisiología , Mapeo Encefálico , Corteza Cerebral/fisiología , Conectoma , Femenino , Humanos , Individualidad , Masculino , Desempeño Psicomotor/fisiología , Descanso , Adulto Joven
9.
Neuroimage ; 229: 117731, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33454411

RESUMEN

Brain atlases and templates are at the heart of neuroimaging analyses, for which they facilitate multimodal registration, enable group comparisons and provide anatomical reference. However, as atlas-based approaches rely on correspondence mapping between images they perform poorly in the presence of structural pathology. Whilst several strategies exist to overcome this problem, their performance is often dependent on the type, size and homogeneity of any lesions present. We therefore propose a new solution, referred to as Virtual Brain Grafting (VBG), which is a fully-automated, open-source workflow to reliably parcellate magnetic resonance imaging (MRI) datasets in the presence of a broad spectrum of focal brain pathologies, including large, bilateral, intra- and extra-axial, heterogeneous lesions with and without mass effect. The core of the VBG approach is the generation of a lesion-free T1-weighted image, which enables further image processing operations that would otherwise fail. Here we validated our solution based on Freesurfer recon-all parcellation in a group of 10 patients with heterogeneous gliomatous lesions, and a realistic synthetic cohort of glioma patients (n = 100) derived from healthy control data and patient data. We demonstrate that VBG outperforms a non-VBG approach assessed qualitatively by expert neuroradiologists and Mann-Whitney U tests to compare corresponding parcellations (real patients U(6,6) = 33, z = 2.738, P < .010, synthetic-patients U(48,48) = 2076, z = 7.336, P < .001). Results were also quantitatively evaluated by comparing mean dice scores from the synthetic-patients using one-way ANOVA (unilateral VBG = 0.894, bilateral VBG = 0.903, and non-VBG = 0.617, P < .001). Additionally, we used linear regression to show the influence of lesion volume, lesion overlap with, and distance from the Freesurfer volumes of interest, on labeling accuracy. VBG may benefit the neuroimaging community by enabling automated state-of-the-art MRI analyses in clinical populations using methods such as FreeSurfer, CAT12, SPM, Connectome Workbench, as well as structural and functional connectomics. To fully maximize its availability, VBG is provided as open software under a Mozilla 2.0 license (https://github.com/KUL-Radneuron/KUL_VBG).


Asunto(s)
Mapeo Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Realidad Virtual , Adolescente , Adulto , Anciano , Encéfalo/fisiopatología , Mapeo Encefálico/tendencias , Neoplasias Encefálicas/fisiopatología , Conectoma/métodos , Conectoma/tendencias , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/tendencias , Imagen por Resonancia Magnética/tendencias , Masculino , Persona de Mediana Edad , Flujo de Trabajo , Adulto Joven
10.
Neuroimage ; 238: 118170, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34087365

RESUMEN

The organization of the human brain remains elusive, yet is of great importance to the mechanisms of integrative brain function. At the macroscale, its structural and functional interpretation is conventionally assessed at the level of cortical units. However, the definition and validation of such cortical parcellations are problematic due to the absence of a true gold standard. We propose a framework for quantitative evaluation of brain parcellations via statistical prediction of connectomics data. Specifically, we evaluate the extent in which the network representation at the level of cortical units (defined as parcels) accounts for high-resolution brain connectivity. Herein, we assess the pertinence and comparative ranking of ten existing parcellation atlases to account for functional (FC) and structural connectivity (SC) data based on data from the Human Connectome Project (HCP), and compare them to data-driven as well as spatially-homogeneous geometric parcellations including geodesic parcellations with similar size distributions as the atlases. We find substantial discrepancy in parcellation structures that well characterize FC and SC and differences in what well represents an individual's functional connectome when compared against the FC structure that is preserved across individuals. Surprisingly, simple spatial homogenous parcellations generally provide good representations of both FC and SC, but are inferior when their within-parcellation distribution of individual parcel sizes is matched to that of a valid atlas. This suggests that the choice of fine grained and coarse representations used by existing atlases are important. However, we find that resolution is more critical than the exact border location of parcels.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Conectoma , Bases de Datos Factuales , Humanos , Interpretación de Imagen Asistida por Computador
11.
Magn Reson Med ; 86(1): 487-498, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33533052

RESUMEN

PURPOSE: Spatial normalization is an essential step in resting-state functional MRI connectomic analysis with atlas-based parcellation, but brain lesions can confound it. Cost-function masking (CFM) is a popular compensation approach, but may not benefit modern normalization methods. This study compared three normalization methods with and without CFM and determined their impact on connectomic measures in patients with glioma. METHODS: Fifty patients with glioma were included. T1 -weighted images were normalized using three different methods in SPM12, with and without CFM, which were then overlaid on the ICBM152 template and scored by two neuroradiologists. The Dice coefficient of gray-matter correspondence was also calculated. Normalized resting-state functional MRI data were parcellated using the AAL90 atlas to construct an individual connectivity matrix and calculate connectomic measures. The R2 among the different normalization methods was calculated for the connectivity matrices and connectomic measures. RESULTS: The older method (Original) performed significantly worse than the modern methods (Default and DARTEL; P < .005 in observer ranking). The use of CFM did not significantly improve the normalization results. The Original method had lower correlation with the Default and DARTEL methods (R2 = 0.71-0.74) than Default with DARTEL (R2 = 0.96) in the connectivity matrix. The clustering coefficient appears to be the most, and modularity the least, sensitive connectomic measures to normalization performance. CONCLUSION: The spatial normalization method can have an impact on resting-state functional MRI connectome and connectomic measures derived using atlas-based brain parcellation. In patients with glioma, this study demonstrated that Default and DARTEL performed better than the Original method, and that CFM made no significant difference.


Asunto(s)
Conectoma , Glioma , Encéfalo/diagnóstico por imagen , Glioma/diagnóstico por imagen , Sustancia Gris , Humanos , Imagen por Resonancia Magnética
12.
Cereb Cortex ; 29(6): 2533-2551, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878084

RESUMEN

Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.


Asunto(s)
Corteza Cerebral , Cognición/fisiología , Emociones/fisiología , Modelos Neurológicos , Vías Nerviosas , Personalidad/fisiología , Adulto , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Conectoma/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología
13.
Neuroimage ; 199: 160-171, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31082471

RESUMEN

When using diffusion MRI streamlines tractograms to construct structural connectomes, ideally, each streamline should connect exactly 2 regions-of-interest (i.e. network nodes) as defined by a given brain parcellation scheme. However, the ill-posed nature of termination criteria in many tractography algorithms can cause streamlines apparently being associated with zero, one, or more than two grey matter (GM) nodes; streamlines that terminate in white matter or cerebrospinal fluid may even end up being assigned to nodes if the definitions of these nodes are not strictly constrained to genuine GM areas, resulting in a misleading connectome in non-trivial ways. Based on both in-house MRI data and state-of-the-art data provided by the Human Connectome Project, this study investigates the actual influence of streamline-to-node assignment methods, and their interactions with fibre-tracking terminations and brain parcellations, on the construction of pairwise regional connectivity and subsequent connectomic measures. Our results show that the frequency of generating successful pairwise connectivity is heavily affected by the convoluted interactions between the applied strategies for connectome construction, and that minor changes in the mechanism can cause significant variations in the within- and between-module connectivity strengths as well as in the commonly-used graph theory metrics. Our data suggest that these fundamental processes should not be overlooked in structural connectomics research, and that improved data quality is not in itself sufficient to solve the underlying problems associated with assigning streamlines to brain nodes. We demonstrate that the application of advanced fibre-tracking techniques that are designed to correct for inaccuracies of track terminations with respect to anatomical information at the fibre-tracking stage is advantageous to the subsequent connectome construction process, in which pairs of parcellation nodes can be more robustly identified from streamline terminations via a suitable assignment mechanism.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/métodos , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Red Nerviosa/diagnóstico por imagen , Adulto , Encéfalo/anatomía & histología , Conectoma/normas , Imagen de Difusión Tensora/normas , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Masculino , Red Nerviosa/anatomía & histología
14.
Neuroimage ; 197: 677-688, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29309898

RESUMEN

The cortical layers define the architecture of the gray matter and its neuroanatomical regions and are essential for brain function. Abnormalities in cortical layer development, growth patterns, organization, or size can affect brain physiology and cognition. Unfortunately, while large population studies are underway that will greatly increase our knowledge about these processes, current non-invasive techniques for characterizing the cortical layers remain inadequate. For decades, high-resolution T1 and T2 Weighted Magnetic Resonance Imaging (MRI) have been the method-of-choice for gray matter and layer characterization. In the past few years, however, diffusion MRI has shown increasing promise for its unique insights into the fine structure of the cortex. Several different methods, including surface analysis, connectivity exploration, and sub-voxel component modeling, are now capable of exploring the diffusion characteristics of the cortex. In this review, we will discuss current advances in the application of diffusion imaging for cortical characterization and its unique features, with a particular emphasis on its spatial resolution, arguably its greatest limitation. In addition, we will explore the relationship between the diffusion MRI signal and the cellular components of the cortex, as visualized by histology. While the obstacles facing the widespread application of cortical diffusion imaging remain daunting, the information it can reveal may prove invaluable. Within the next few years, we predict a surge in the application of this technique and a concomitant expansion of our knowledge of cortical layers.


Asunto(s)
Corteza Cerebral/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Gris/anatomía & histología , Neuroimagen/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
15.
Neuroimage ; 170: 95-112, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27393420

RESUMEN

Connectivity-based parcellation approaches present an innovative method to segregate the brain into functionally specialized regions. These approaches have significantly advanced our understanding of the human brain organization. However, parallel progress in animal research is sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have obtained robust functional parcellations of the rat brain. These functional parcellations reveal the regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high reproducibility across animals. Graph analysis of the whole-brain network constructed based on these functional parcels indicates that the rat brain has a topological organization similar to humans, characterized by both segregation and integration. Our study also provides compelling evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. Together, this study has characterized the rat brain specialization and integration, and has significantly advanced our understanding of the rat brain organization. In addition, it is valuable for studies of comparative functional neuroanatomy in mammalian brains.


Asunto(s)
Atlas como Asunto , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Ratas/fisiología , Animales , Masculino , Ratas Long-Evans
16.
Neuroimage ; 169: 134-144, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29225065

RESUMEN

This study aims to elucidate age-related intrinsic brain volume changes over the adult lifespan using an unbiased data-driven structural brain parcellation. Anatomical brain images from a cohort of 293 healthy volunteers ranging in age from 21 to 86 years were analyzed using independent component analysis (ICA). ICA-based parcellation identified 192 component images, of which 174 (90.6%) showed a significant negative correlation with age and with some components being more vulnerable to aging effects than others. Seven components demonstrated a convex slope with aging; 3 components had an inverted U-shaped trajectory, and 4 had a U-shaped trajectory. Linear combination of 86 components provided reliable prediction of chronological age with a mean absolute prediction error of approximately 7.2 years. Structural co-variation analysis showed strong interhemispheric, short-distance positive correlations and long-distance, inter-lobar negative correlations. Estimated network measures either exhibited a U- or an inverted U-shaped relationship with age, with the vertex occurring at approximately 45-50 years. Overall, these findings could contribute to our knowledge about healthy brain aging and could help provide a framework to distinguish the normal aging processes from that associated with age-related neurodegenerative diseases.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/anatomía & histología , Sustancia Gris/anatomía & histología , Desarrollo Humano/fisiología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
17.
Neuroimage ; 164: 112-120, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28274834

RESUMEN

The cortical layers are a finger print of brain development, function, connectivity and pathology. Obviously, the formation of the layers and their composition is essential to cognition and behavior. The layers were traditionally measured by histological means but recent studies utilizing MRI suggested that T1 relaxation imaging consist of enough contrast to separate the layers. Indeed extreme resolution, post mortem, studies demonstrated this phenomenon. Yet, one of the limiting factors of using T1 MRI to visualize the layers in neuroimaging research is partial volume effect. This happen when the image resolution is not high enough and two or more layers resides within the same voxel. In this paper we demonstrate that due to the physical small thickness of the layers it is highly unlikely that high resolution imaging could resolve the layers. By contrast, we suggest that low resolution multi T1 mapping conjugate with composition analysis could provide practical means for measuring the T1 layers. We suggest an acquisition platform that is clinically feasible and could quantify measures of the layers. The key feature of the suggested platform is that separation of the layers is better achieved in the T1 relaxation domain rather than in the spatial image domain.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Animales , Femenino , Humanos , Masculino , Ratas
18.
Neuroimage ; 170: 5-30, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28412442

RESUMEN

The macro-connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. It embodies the notion of representing and understanding all connections within the brain as a network, while the subdivision of the brain into interacting functional units is inherent in its architecture. As a result, the definition of network nodes is one of the most critical steps in connectivity network analysis. Although brain atlases obtained from cytoarchitecture or anatomy have long been used for this task, connectivity-driven methods have arisen only recently, aiming to delineate more homogeneous and functionally coherent regions. This study provides a systematic comparison between anatomical, connectivity-driven and random parcellation methods proposed in the thriving field of brain parcellation. Using resting-state functional MRI data from the Human Connectome Project and a plethora of quantitative evaluation techniques investigated in the literature, we evaluate 10 subject-level and 24 groupwise parcellation methods at different resolutions. We assess the accuracy of parcellations from four different aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity to the underlying connectivity data, (3) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (4) network analysis. This extensive evaluation of different parcellations generated at the subject and group level highlights the strengths and shortcomings of the various methods and aims to provide a guideline for the choice of parcellation technique and resolution according to the task at hand. The results obtained in this study suggest that there is no optimal method able to address all the challenges faced in this endeavour simultaneously.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Humanos , Interpretación de Imagen Asistida por Computador
19.
Neuroimage ; 170: 257-270, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28213120

RESUMEN

The human ventral visual stream consists of several areas that are considered processing stages essential for perception and recognition. A fundamental microanatomical feature differentiating areas is cytoarchitecture, which refers to the distribution, size, and density of cells across cortical layers. Because cytoarchitectonic structure is measured in 20-micron-thick histological slices of postmortem tissue, it is difficult to assess (a) how anatomically consistent these areas are across brains and (b) how they relate to brain parcellations obtained with prevalent neuroimaging methods, acquired at the millimeter and centimeter scale. Therefore, the goal of this study was to (a) generate a cross-validated cytoarchitectonic atlas of the human ventral visual stream on a whole brain template that is commonly used in neuroimaging studies and (b) to compare this atlas to a recently published retinotopic parcellation of visual cortex (Wang et al., 2014). To achieve this goal, we generated an atlas of eight cytoarchitectonic areas: four areas in the occipital lobe (hOc1-hOc4v) and four in the fusiform gyrus (FG1-FG4), then we tested how the different alignment techniques affect the accuracy of the resulting atlas. Results show that both cortex-based alignment (CBA) and nonlinear volumetric alignment (NVA) generate an atlas with better cross-validation performance than affine volumetric alignment (AVA). Additionally, CBA outperformed NVA in 6/8 of the cytoarchitectonic areas. Finally, the comparison of the cytoarchitectonic atlas to a retinotopic atlas shows a clear correspondence between cytoarchitectonic and retinotopic areas in the ventral visual stream. The successful performance of CBA suggests a coupling between cytoarchitectonic areas and macroanatomical landmarks in the human ventral visual stream, and furthermore, that this coupling can be utilized for generating an accurate group atlas. In addition, the coupling between cytoarchitecture and retinotopy highlights the potential use of this atlas in understanding how anatomical features contribute to brain function. We make this cytoarchitectonic atlas freely available in both BrainVoyager and FreeSurfer formats (http://vpnl.stanford.edu/vcAtlas). The availability of this atlas will enable future studies to link cytoarchitectonic organization to other parcellations of the human ventral visual stream with potential to advance the understanding of this pathway in typical and atypical populations.


Asunto(s)
Atlas como Asunto , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Lóbulo Occipital/citología , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Temporal/citología , Lóbulo Temporal/diagnóstico por imagen , Percepción Visual , Adulto , Femenino , Humanos , Masculino , Lóbulo Occipital/patología , Lóbulo Temporal/patología
20.
Neuroimage ; 123: 212-28, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26241681

RESUMEN

A recent trend in functional magnetic resonance imaging is to test for association of clinical disorders with every possible connection between selected brain parcels. We investigated the impact of the resolution of functional brain parcels, ranging from large-scale networks to local regions, on a mass univariate general linear model (GLM) of connectomes. For each resolution taken independently, the Benjamini-Hochberg procedure controlled the false-discovery rate (FDR) at nominal level on realistic simulations. However, the FDR for tests pooled across all resolutions could be inflated compared to the FDR within resolution. This inflation was severe in the presence of no or weak effects, but became negligible for strong effects. We thus developed an omnibus test to establish the overall presence of true discoveries across all resolutions. Although not a guarantee to control the FDR across resolutions, the omnibus test may be used for descriptive analysis of the impact of resolution on a GLM analysis, in complement to a primary analysis at a predefined single resolution. On three real datasets with significant omnibus test (schizophrenia, congenital blindness, motor practice), markedly higher rate of discovery were obtained at low resolutions, below 50, in line with simulations showing increase in sensitivity at such resolutions. This increase in discovery rate came at the cost of a lower ability to localize effects, as low resolution parcels merged many different brain regions together. However, with 30 or more parcels, the statistical effect maps were biologically plausible and very consistent across resolutions. These results show that resolution is a key parameter for GLM-connectome analysis with FDR control, and that a functional brain parcellation with 30 to 50 parcels may lead to an accurate summary of full connectome effects with good sensitivity in many situations.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Adolescente , Adulto , Anciano , Algoritmos , Ceguera/congénito , Ceguera/fisiopatología , Encéfalo/fisiopatología , Simulación por Computador , Interpretación Estadística de Datos , Humanos , Procesamiento de Imagen Asistido por Computador , Aprendizaje/fisiología , Modelos Lineales , Masculino , Persona de Mediana Edad , Desempeño Psicomotor/fisiología , Reproducibilidad de los Resultados , Esquizofrenia/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA